
JOURNAL OF COMPtJTATlONAL PHYSICS 94, 352-381 (1991)

Finite Element Applications on a Shared-Memory

Multiprocessor: Algorithms and Experimental Results

RAMESH NATARAJAN

IBM Thomas J. Wutson Research Center. Yorkrown Heights, New York 10598

Received Scptcmber 9, 1989; revised March 9, 1990

We describe strategies for parallelizing fmite element applications on a shared-memory mul-
tiprocessor. The applications studied include the ConvectionAiffusion equation, and the

Stokes equations of low Reynolds number hydrodynamics. The overall approach that we use

is standard, but with signiiicant restructuring for efficient parallel computation. The primary
focus is on parallel methods for solving the linear systems of algebraic equations generated by

the linite element discretization using polynomial iterative solvers preconditioned by incom-

plete factorizations. The challenging issue is the parallelization of the preconditioner, espe-
cially for the unstructured matrices obtained from finite element discretizations, and we

describe the algorithms developed for this purpose. Specific experimental results obtained with

our programs on ACE, a prototype R-way, bus-based, shared-memory multiprocessor are
discussed in detail. CC 1991 Academic Press. Inc

1. INTRODUCTION

This paper describes parallelization strategies and experimental results obtained
on a shared memory multiprocessor for the solution of problems in fluid flow and
transport phenomena using finite element methods. Our intent in this research is to
develop general-purpose methods for the complex, computationally-intensive
problems in this application area. However, in order to emphasize parallel proces-
sing issues, we only discuss some relatively uncomplicated model problems in this
paper, focusing primarily instead on the parallelization of iterative methods for
solving the sparse linear systems of equations that arise from the finite element
discretization of the underlying continuum problem. Strang and Fix [25] have
remarked on the widespread use of direct solution methods based on LU decom-
position in finite element programs. These methods have the following advantages:
they are relatively robust, they can be used to solve for multiple right-hand sides
at little additional cost, and they terminate with an answer in a fixed number of
steps (event though the solution obtained may be inaccurate for poorly conditioned
matrices). Although much progress has been made in developing direct solution
methods for very large-scale problems (Duff [S]), the primary difficulty is the till-in
during elimination, which results in prohibitive computational and storage costs for
many realistic applications.

352
0021-9991/91 $3.00
Copyright f; 1991 hy Academic PEW. Inc
All rights of reproductron in any brn reserved

PARALLEL FINITE ELEMENTS 353

Iterative solution methods are useful in these large-scale applications because the
matrix is never modified in them and very little additional storage is required
beyond that for the original matrix itself. Recent research has led to effective
iterative algorithms that are robust and rapidly convergent (Hageman and Young
[13]; Kincaid, Oppe, and Joubert [16]). Notable among these are the so-called
polynomial iterative algorithms which approximate the solution (or equivalently,
the residual) from the Krylov subspace of the matrix, generating this subspace in
such a way that the storage requirement and the work per iteration are kept small.
These methods are generalizations of the well-known conjugate-gradient and
Lanczos algorithms for symmetric, positive-definite matrices, and in practice are
often coupled with effective preconditioning techniques that dramatically improve
their convergence. Their attractiveness from the parallel processing point of view is
due to the fact that the basic operations in them are highly regular and easily parti-
tioned. The most computationally-intensive part is typically a matrix-vector multi-
plication, an operation that can be heavily optimized on parallel computers. The
challenge in the parallel implementation of these methods is therefore primarily one
of devising suitably optimized preconditioners, and in this context, we have insisted
on the criterion that the uniprocessor performance of the parallel preconditioner be
comparable to that of the best-known, equivalent sequential preconditioner (Saad
and Schultz [22]; Ortega [193). The determination of the best sequential precondi-
tioner is itself a complex issue that is highly architecture and problem dependent.
In this research, therefore, we only report our speedup measurements relative to
the uniprocessor performance of the same program, with the previous criterion
ensuring that our results are at least qualitatively consistent.

The outline of this paper is as follows. Section 2 contains the details of the model
problems, their finite element discretization, and the iterative algorithms used in
their solution. Section 3 discusses some general aspects of the parallel architecture
and software environment, insofar as they influence the choice and efficiency of our
finite element data structures. Sections 4 and 5 respectively describe the paralleliza-
tion of the matrix assembly and of the iterative solution algorithms. Section 6 gives
details of the experimental timings and speedups for our programs on the ACE
parallel computer system. Section 7 concludes with a summary and indicates areas
for future research.

2. THEORETICAL DETAILS

A. The Convection-D&fusion Equation

I. The total concentration c of a passive scalar due to diffusion and convec-
tion within a fluid domain Q with boundary ,Y is given by

V2c- Peu-Vc=O, (1)

where u is the stationary velocity field in Q, and Pe is the dimensionless Peclet

354 RAMESH NATARAJAN

number. We assume the following boundary conditions on non-intersecting, but
possibly empty, subsets of Y,

c= co, on r,, (24

Vc.n=f, on r2, (2b)

Vc.n-hc=g, on r3. (2c)

Here n denotes the unit normal vector on Y = r, u Tz u rj. Conditions (2a)
and (2b) arise respectively from specifying the concentration and the flux at the
boundary surface. Condition (2~) arises when a phenomenological transfer model is
used for the boundary flux (h is a dimensionless Biot number in heat-transfer
applications).

II. Consider the function space V= H:(Q) of functions that along with their
first derivatives are square-integrable in Q and vanish on r, . The weak form of (1)
then corresponds to finding the function c E H’(Q) such that

?*, [Vc .Vv + Pe(u .Vc) v] dV= Is (Vc. n) u dS, VVE v. (3)

III. We report on results obtained from a finite element discretization of (3)
in two-dimensional geometries using two types of elements: (i) a quadrilateral ele-
ment with 4-point bilinear basis functions; (ii) a quadrangular element with 9-point
biquadratic basis functions. Both these elements are isoparametrically mapped to a
square reference element where element integrals are evaluated using 4-point and
9-point Gaussian quadrature, respectively.

We expand for c in the terms of the finite element basis functions Qi in the form

and use Galerkin’s method in (3) to obtain

[V@; V@, + Pe(u . VGi) @;I dV

-
I

(VQj.n)QidV c,=O, 1 i = 1, ,,.) N. (5)
s

The integrals in (5) are evaluated element-by-element and the results assembled
into a global matrix and right-hand side to yield a system of linear algebraic equa-
tions of the form

Ax=b, (6)

where x= [c,, c2, cNIT is the vector of unknown nodal values. Essential

PARALLEL FINITE ELEMENTS 355

boundary conditions are then imposed, following standard finite element practice,
by setting the off-diagonal and diagonal entries in the corresponding row of A to
zero and unity, respectively, and by appropriately modifying the entries in the
right-hand side vector so that the known boundary values are trivially obtained in
the solution process.

Remark 1. With the standard Galerkin discretization above, a very line mesh is
required for large values of Pe, to avoid unstable oscillations in the solution. The
required stability criterion, and alternative Petrov-Galerkin discretization schemes
that lead to a more stable formulation by using different basis functions for the
expansion and test function sets, are discussed in Thomasset [26].

IV. The stiffness matrix A in (6) is non-symmetric and definite, but when Pe

is moderate, there are variants of the standard conjugate gradient algorithm that
seem to work well for it. One of these, which is very straightforward to implement
and works especially well when preconditioned by a suitable matrix T, is the
conjugate gradient squared (CGS) algorithm of Sonneveld [24], shown below.

conjugate gradient squared (CGS):
x0 = initial solution guess
s,=T ‘(h-Ax,)

po=so

4o=so
po=s;.so

for k = 0, 1, until convergence do
begin

ok = ST. T ~- ’ Aq,

uk = Pkbk

fk=Pk-UkTp'Aqk

&=Pk+fk
x,+,=x,+&g,
s k+j =sk-XkT-‘Agk

T
Pk+l=*yo’Sk+l

Pk=Pk+l/Pk

Pk+l=Sk+l+bkfk

qk+l=Pk+l +pk(.fk+bkqk)

enddo

The unpreconditioned version of the algorithm requires six vectors of length N,
in addition to the storage for the matrix, solution vector, and right-hand side. The
arithmetic work per iteration consists of two matrix-vector multiplications, seven
saxpy’s and two dot-product operations. It has the advantage over some other
methods of not requiring a matrix-vector multiply with the transposed matrix,
which can be useful, for example, when the matrix is stored in the sparse format of
Section 4.

356 RAMESH NATARAJAN

B. The Stokes Equations

I. The creeping flow of an incompressible fluid in a domain D with bounding
surface Y is described by the following dimensionless equations

-Vp+V-r=f,

V.u=Q,

(7)

(8)

where p, r, and u denote the pressure, stress tensor, and velocity, respectively, and
f is a volumetric body force. Equation (7) is also relevant when a Picard iterative
scheme is used on the full steady Navier-Stokes equations by approximating it as
a sequence of simpler Stokes problems. In that case f would also contain
approximations to the nonlinear convective terms from the previous iteration. The
stress tensor is given for a Newtonian fluid by

r=Vu+(VU)T. (9)

This set of equations must satisfy the boundary conditions on Y = r, u r2,

u = u(), on r,,

-pn+r-n=g, on f,,

where n denotes the unit normal vector on the boundary surface, and u0 and g are
the velocity and traction boundary conditions. We make a few remarks on the
boundary conditions.

Remark 2. If Z-1 = (25, then solutions u to (7))(9) are unique only up to an
arbitrary rigid motion. Then f must be consistent with the boundary condition
on Tz.

Remark 3. If r2 #@ and r, n r2 # 0, then we have a free-boundary on
T, n r,. This requires an additional boundary condition on r2, essentially stating
that this bounding surface is also a material surface of the fluid. We have not
considered this case in the computations presented in this paper.

Remark 4. If r, = Y, then the boundary velocity u0 must be consistent with the
global conservation of mass, i.e., j,Y uO. n dS = 0.

II. The weak version of this problem can be formulated as follows. Consider
the function space V= (HA(a))” consisting of vector functions vanishing on rl,
whose components along with their first derivatives are square-integrable in Q. Also
consider the function space Q = L*(Q) consisting of square-integrable functions in
R (Note. If the pressure is determined only up to an arbitrary constant, then the

PARALLEL FINITE ELEMENTS 357

space Q is defined module the space of constant functions on Sz). The weak form
of (7)-(9) then corresponds to finding a pair (u, p) in (H’(Q))” x Q such that

lQ [r:Vv-pV.v]dV= -jQf.vdV-[L, [pn-t.n] .vdS, VVG v, (10)

[(V.u)qdl’=O, VqeQ.
JR

(11)

Remark 5. The normal stress condition appears as the natural boundary condi-
tion in (lo), but this is not so useful when only velocity boundary conditions are
imposed. An alternative formulation obtained by substituting the divergence condi-
tion (8) into (7) yields the weak form

I [Vu:Vv- pV.v] dV
R

= - f.vdV- [pn-Vu.n].vdS, VVE v, (12)

which is useful in Cartesian coordinates where the integrand involving u and v sim-
plifies to yield copies of the well-known weak form of the Laplacian operator for
each scalar velocity component.

III. The discretization is carried out using the nine-point Crouzeix-Raviart
quadrilateral element on which velocity and pressure are approximated by con-
tinuous biquadratic and piecewise-continuous linear basis functions, respectively. It
has been shown that this basis yields discrete approximations to the spaces V and
Q, that satisfy the Babuska-Brezzi condition required for the solvability of (10) and
(11) (Fortin [lo]; Girault and Raviart [12]).

For computational purposes, this quadrilateral is mapped to a square reference
element on which the element integrals are evaluated using a 9-point Gaussian
quadrature rule. There are nine nodal variables for each velocity component in this
element-its values at the four vertices, at the four mid-edge nodes, and at the
centroid. There are three nodal variables for the pressure in each element, which are
its value and those of its derivatives at the centroid node (note that the pressure
derivative is constant on each element). This leads to a total of 21 unknowns per
element in two dimensions, which can be reduced to 17 unknowns per element by
eliminating the unknown velocities and the pressure derivatives at the centroid
node prior to element assembly. This procedure can be carried out stably, by
eliminating the pressure gradient unknowns from the components of the momen-
tum residual equation, and the velocity unknowns from the components of the con-
tinuity residual equation. The element-level substructuring is most useful since the
number of unknowns and the bandwidth of the stiffness matrix is reduced without
in any way affecting the solution accuracy. Thus, letting M and N denote the

358 RAMESH NATARAJAN

number of centroid and non-centroid nodes, respectively, in the finite element mesh,
we expand for u and p in the form

N

u= 1 UiQjl, P= 5 Ply;,
r=l ,=I

where Qi, !Pi are the basis functions that are obtained from the original Crouzeix-
Raviart basis set after element-level substructuring.

The use of Galerkin’s method then yields

i c t:VQie, -pV. (Qjek)] dV

= -
.r

f.vdV+
j

[z.n.@,ek-p@iek.n] dS, i=l iV, , (13)
R s

I (V.u) YidV=O, i= 1, M. (14)
R

The alternative form of (13), obtained from the weak formulation in (12), is given

by

I [Vu:V@,e, - pV. (@,ek)] dV
R

= -1 f.vdV+[[Vu.n.@ie,-p@iek.n] dS, i= 1, N. (15)
R s

IV. The weak form in (13)-(14) leads to a saddle-point variational problem
and the standard iterative solution technique devised for minimization problems are
not readily usable for it. We briefly comment on two alternative schemes that to
lead to a minimization problem, but which have other difficulties associated with
them especially in the context of iterative methods. The first scheme chooses an
expansion basis set for u from the solenoidal subspace V. c V. The derivation of
elements which satisfy this property is difficult and requires the introduction of new
degrees of freedom for which appropriate boundary conditions must be obtained
(see Cuvelier, Segal, and Steenhoven [7]). The difficulty here is in finding suitable
good initial guesses that satisfy this divergence-free condition for use with linear
iterative solvers.

A second scheme is to introduce a penalty parameter E ‘, E < 1 into the problem
formulation; i.e., instead of (11) we write

i (V.u+cp)qdV=O, VqEQ. (16)
JR

PARALLEL FINITE ELEMENTS 359

Note that this is equivalent to artificially introducing a small amount of com-
pressibility into the problem. Using Galerkin’s method, with the basis function
expansions for u and p in (12) and (13), and carrying out the finite element
assembly, we obtain a set of equations of the form

AU+ BTP=b,, (17a)

BU+EDP= b,, (17b)

in which A is a N x N symmetric, positive-definite matrix, B is a M x N matrix, and
D is a M x M diagonal matrix. Eliminating P by block Gaussian elimination, we
obtain

AU=(A+E-‘B~D~‘B)U=~,-B~D-‘~~. (18)

Note that A^ is also symmetric, positive-definite, and when piecewise-constant basis
functions are used for the pressure, this matrix can be directly assembled element-
by-element. For small E, A^ is very ill-conditioned, but this is not a serious problem
when direct solution methods are used, since the magnitude of E can be adjusted to
obtain a reasonable compromise between the round-off error growth and the
approximation of the incompressibility condition. For iterative methods, however,
this will result in the number of iterations required for convergence becoming very
large and our experience has been that even with preconditioning it is difficult to
obtain an effective algorithm with this approach.

V. Performing the block Gaussian-elimination on (17) in an alternative way
(and setting E = 0) leads to a formulation that avoids the difficulties associated with
matrix ill-conditioning

AU=b,-BTP,

BA ‘BTP=BA lb,-b,.

This yields two uncoupled positive-definite systems that can be solved successively
for P and U in that order. An inner-outer iterative approach is used in solving
(19b). The outer loop requiring the inversion of (BA ~ ‘BT) is carried out by a
standard conjugate-gradient algorithm. Each iteration in this algorithm requires the
action of (BA - ‘BT) on a vector and the inversion of A required in this step is
carried out using preconditioned conjugate-gradient in an inner loop. The algo-
rithm for the outer iteration is as follows

inner-outer conjugate gradient algorithm (IOCG)
initialize outer iteration
x, =A--lb,
r,=Bx,-b,
x20 = initial solution guess
r ,o=BTx,,,

360 RAMESH NATARAJAN

x,=Aplrlo
s,=r,-Bx,

po=so
yo = s;. so

for k = 0, 1, until convergence do
begin

rlk=BTpk
x, =Ap’rlk
qk = Bx,

Sk= P&h
a/, = y&k

,xZk+l =X2k+ClkPk

Sk+l=Sk-rkqk

~k+l=S;+,.Sk+l

Pk+I =Yk+Ihk

Pk+I=Sk+I+bk+IPk

enddo

finish up by solving for x,
rl = 6, - BTx,,
x, = A-‘r,

This implementation of IOCG requires four vectors of length M + N (assuming
that the inner conjugate gradient is unpreconditioned), besides the storage that is
used for A, B, Br, and the solution and right-hand side vectors. We store BT
explicitly in order to obtain an efficient matrix-vector multiply with it. Each itera-
tion of the unpreconditioned inner conjugate gradient requires one matrix-vector
multiply, and two dot-products, and three saxpy’s on vectors of length N. The
requirements of the outer conjugate gradient iteration are roughly similar, two
matrix-vector multiplys with B and BT are required, and two dot-products and four
saxpy’s on vectors of length M.

One nice feature of the formulation given here is that the inner conjugate
gradient benefits from the progress of the outer loop, so that especially in the later
stages, when good initial guesses are available, very few inner iterations are
required to reduce the residual to a prescribed tolerance, Thus, even though sparse
Cholesky factorization methods are also attractive for the inversion of A, the
present scheme requires less storage, better exploits the information in good initial
guesses, and is more amenable to a parallel implementation. However, care must be
taken to ensure that the inner iteration is converged to sufficient accuracy so that
the matrix that is inverted in each outer iteration is unchanged, since this property
is essential for the convergence of the outer conjugate gradient iteration. Although
in practice we have not found this to be a problem, we note that Bramble and
Pasciak [IS] have proposed an alternate algorithm for (19) that avoids this dif-
ficulty by not using the inner-outer formulation at all; however, their approach
does require the estimation of an additional “scaling” parameter.

PARALLEL FINITE ELEMENTS 361

3. PARALLEL ARCHITECTURE AND SOFTWARE CONSIDERATIONS

Our work is directed towards the asynchronous, shared-memory class of parallel
computers, specifically the ACE workstation multiprocessor developed at the IBM
T. J. Watson Research Center, which has recently been the focus of our experimen-
tal efforts. The ACE architecture is comprised of eight 32-bit processors rated at
one MIPS, with each processor having about 8 Mb of local memory. These pro-
cessors are connected by a 80 Mb/s bus to each other and to a global memory that
can be extended to 64 MB. The various design aspects of the memory configuration,
such as the interleaving used, and the nominal relative latencies of local and global
memory, can be found along with the other architectural details, in the paper by
Garcia, Foster, and Freitas [111. Since ACE is not a production scientific com-
puter but an evolving experimental prototype, we have not made absolute perfor-
mance a crucial issue in this research. In addition, we have avoided using any
machine-dependent parameterizations that might affect the generality and efficiency
of our programs on other shared memory parallel computers or on future versions
of the ACE architecture itself.

Our parallel programs are written using the Preface/Mach/EPEX environment
(Bernstein and So [4]; Bolmarcich [S]). This environment provides a set of
parallel constructs that can be embedded by the programmer in otherwise standard,
sequential FORTRAN code to allow the specification of shared and private data,
and to indicate the parallel flow of control through the code. These constructs are
identified by a preprocessor and replaced in-line by appropriate subroutine calls to
a run-time synchronization library. The parallel control constructs used include:

1. serial sections, that identify code executed by only one processor

2. parallel loops, for the self-scheduled execution of independent iterations of
a FORTRAN DO-loop

3. critical sections, that identify code executed by only one processor at a time

4. harriers, at which all processes must synchronize before proceeding with
further execution.

Since these are all standard parallel programming constructs, we expect their
functionality to be reproducible in other environments.

We illustrate the style, syntax, and efficiency of our parallel programs with a sim-
ple example. Consider some of the operations on shared vector operands that might
be repeatedly used in iterative algorithms, such as dot-products, saxpy’s, scalar nor-
malization, vector-to-vector copy, and so on. These are all parallelized by a run-
time “strip-mining” of the operands among the processors, an approach that should
yield close to perfect speedups with sufficiently long operands. An example of a
routine written in this style is shown in Appendix 1, where the stride one dot-
product of two shared vectors is computed, and the result is returned as a private
value to each process. All the parallel constructs mentioned earlier are used in this
example (Note. the @ symbol identifies keywords for the preprocessor).

362 RAMESH NATARAJAN

The various factors that affect the parallel efficiency of this routine are described
below, assuming throughout that the vector lengths are large relative to the number
of processors. First, we have the extra work due to simply inserting the code for the
parallel constructs, which can be measured by comparing the uniprocessor execu-
tion time of the parallel program with that of the original sequential code. Since
each parallel construct adds only a few synchronization instructions to the original
sequential program, it is expected and confirmed by experiments that this overhead
is negligible.

Second, we have the overhead due to uneven partitioning of the work during
multiprocessor execution, which manifests itself as the time spent by processes
waiting at synchronization points, such as barriers, serial sections, and critical
sections. This overhead is small in the dot-product example for a variety of reasons;
few instructions are executed in explicitly-protected mode, and the number of
accesses to implicitly-protected regions of code, such as the parallel DO-loop
scheduler are reduced by chunking iterations. Finally, in the interval between the
two global synchronizations in the routine where the largest amount of work is
performed, with each process computing its portion of the parallel dot-product,
there is a very even division of work (especially when the vector length is a multiple
of the number of processors).

Third, random or non-reproducible environmental effects in an asynchronous
MIMD environment can lead to uneven execution times between global syn-
chronizations. These effects generally have their origins in hardware resource con-
tention, such as bus and memory bank conflicts, and process multiplexing. Their
impact in a shared memory environment can be reduced by using a smaller task
granularity. For example, the use of a smaller chunksize in the parallel DO-loop
enables faster processors to take up more of the work load and compensate for
variations in the individual processing speeds. These overheads are similar to those
described in the previous paragraph in terms of their effect being manifested as a
work-load imbalance; however, they differ in that they depend more intimately on
the architectural organization and balance, and on the run-time environment,
rather than on the programmer-induced partitioning of work. This makes it very
difficult to obtain an adequate general characterization for this class of overheads.
However, our measurements are always carried out in single-user mode with fewer
processes than processors, and a “master” processor is always left free to perform
the various time-shared operating system chores unrelated to the application. In
addition, various local memory optimizations essential to obtaining good perfor-
mance also have the desirable side-effect of reducing memory and bus contention.
For these reasons, the effect of this class of overheads on our program performance
is small, and our results are always well reproducible.

For asymptotically long vector operands, our measurements on ACE show
parallel efficiencies of over 0.95 for the dot-product programmed as shown in
Appendix 1. This is quite satisfactory, but it raises the question as to whether it is
possible to achieve an even better efficiency than this by sectioning array operands
and distributing them among the processors as private data. The relative merits of

PARALLEL FINITE ELEMENTS 363

these two approaches on the ACE architecture leads to some subtle and interesting
issues that we have discussed in great detail in a companion paper (Natarajan
[IS]), from which we summarize briefly. The ACE architecture has been con-
sciously designed to avoid the high development cost of hardware synchronization
for maintaining the “cache-consistency” of shared data in the individual local
memories. Instead, certain operating system assists, akin to demand paging, are
used in order to reduce the latency by having shared data paged into the local
memories of individual processors. The effectiveness of these assists, however, can
be rapidly degraded if the shared data is not very carefully managed. In particular,
in a straightforward dynamic task-scheduling environment, without further work, a
low-latency access can only be guaranteed only for the private data. It is our obser-
vation that in a relatively complicated program, after an initial transient, the ACE
memory model moves to a state in which the local memories contain only code and
private data, while the global memory contains only shared data. The relative
efficiency of global/shared versus distributed/private data structures in this memory
model is again not obvious. Briefly, global data structures provide programming
simplicity and generality, and lead to a better processor utilization when the
workload is uneven, while distributed data structures lead to much lower latencies
in accessing data.

In our current program implementations we make the most appropriate choice
for storing the data structures consistent with these programming trade-offs. For
example, the stiffness matrix and the various arrays in the linear solvers are
declared as shared variables for programming convenience, while element matrices,
whose scope is restricted to a single parallel task are declared as private variables.
This means that memory accesses to the primary data structures might possibly
take place at the global memory latency, although in practice, this will be partially
compensated by the greater generality of usage and the improved load balancing
that is obtained. In addition, in the present instance, there are some difficulties
associate with the use of distributed data structures for some of the larger problems,
since on the ACE machine the size of local memory can become a limitation (par-
ticularly without the full implementation of the proposed use of global memory as
an automatic paged store for private-data pages).

4. MATRIX STORAGE FORMATS AND FINITE ELEMENT ASSEMBLY

The primary targets for speedup in a finite element program are: (i) the computa-
tion of element matrices and their assembly into the stiffness matrix; and (ii) the
solution of linear systems of algebraic equations. On parallel computers, the
efficiency of both these steps depends crucially on the storage format used for the
stiffness matrix. We have used the standard storage format for non-symmetric
sparse matrices in with the nonzero entries are stored row-by-row in a single array.
An associated array holds the corresponding column index of each entry in the pre-
vious array, and a third array holds pointers to the location of the first element of

364 RAMESH NATARAJAN

each row of the matrix in the first and second arrays. Symmetric matrices are also
stored in the same format, although it would be sufficient to just store the upper
or lower triangle. The computational efftciency obtained with the redundant
representation, particularly in the matrix-vector multiply operation, more than
compensates for the extra storage used.

The parallelization of the finite element assembly process is straightforward. Each
element matrix is computed in parallel and the assembly into the stiffness matrix,
which is a shared array, is performed in a critical section, thereby ensuring that
multiple processes do not simultaneously modify the same shared memory location.

for each element pardo
call routines to generate element matrix and right-hand sides
begin critical section
assemble into stiffness matrix and right-hand side
end critical section

endpardo

The bottleneck here occurs when processes have to wait while another process is
executing within the critical section. We show here qualitatively that this waiting
time can be small, particularly in those applications in which the cost of generating
the element matrices is greater than the cost of the assembly into the global matrix.
Specifically, consider the case where in each independent iteration in the parallel
loop, the ratio of the number of instructions executed outside the critical section to
that executed inside it, exceeds the total number of active processes. Then, during
execution, each process in its first pass through the loop will be released in
a staggered manner from the critical section. After this preliminary transient,
therefore, processes are synchronized so that they encounter no contention on
subsequent arrivals at the critical section, and the overall execution then proceeds
practically as though the loop were fully parallel.

From this argument it is clear that the primary optimization in the assembly
algorithm is to reduce the transit time for each process through the critical section.
For example, in the sparse storage format for the stiffness matrix described earlier,
the row pointer index directly gives the range of storage locations into which each
entry from the element matrix will be assembled. The exact location in this range
is then determined by searching the column index list for a match. Since, for each
row, the column-index array is an ordered list, a binary search algorithm can be
used and may be faster than the usual linear search. Let CI denote the order of the
element matrix, and p the number of nonzeroes in a given row of the global matrix.
The asymptotic cost of the linear and binary search algorithms for the assembly of
each row of the element matrix are given by O(c$) and O(cr log, fl), respectively.
However, if these two algorithms are calibrated for ordered lists of various lengths,
then a simple check of the number of non-zeroes of the appropriate row of the
global matrix, can provide a runtime determination of the appropriate algorithm to
be used. Yet another alternative is to use an O(a + fi) linear-time algorithm in

PARALLEL FINITE ELEMENTS 365

which no searching is performed, but which requires an extra temporary vector of
length equal to the order of the global matrix; as described by Pissanetzky [20],
this temporary vector is used to set up pointers for directly performing the assembly
of each row of the element matrix.

We note that the use of a single critical section in this program is unduly conser-
vative, and in particular, processes that update mutually-exclusive regions of
the stiffness matrix are unnecessarily blocked from simultaneous execution. One
approach around this is to partition the stiffness matrix, say in a block-row
fashion, and use separate locks for the updates into each block, which will clearly
reduce the synchronization-waiting at each individual lock. However, this moditica-
tion does not change the overall number of instructions that are executed in a
protected mode, but the granularity of work in each individual access to a critical
section is reduced by having it moved to an inner loop of the matrix assembly. For
example, in the extreme case when each row of the global matrix has its own lock,
the storage required for these locks and the cost of merely executing the locking
instruction itself, can both become significant overheads.

A different approach is suggested by the underlying problem formulation, which
indicates that the simultaneous assembly of two element matrices needs to be
protected by a critical section only if these two elements have common nodes in the
finite element mesh. An element interference graph may be constructed whose ver-
tices correspond to elements, with edges connecting vertices whose corresponding
elements have common nodes in underlying mesh. By coloring this interference
graph so that no two adjacent vertices have the same color, we obtain an algorithm
that dispenses with the critical section, and instead loops sequentially over the color
classes as follows:

for each color class seqdo
for all vertices (elements) in this color class pardo

call routines to generate element matrix and right-hand sides
assemble into stiffness matrix and right-hand side

endpardo
endseqdo

This algorithm will be efficient if the number of sequential steps is kept small,
equivalently, by coloring the interference graph with the fewest possible colors. For
general graphs, the minimum coloring problem is NP-complete, but fast heuristics
are known that will generate a reasonably good minimum coloring. These
approximate algorithms are usually sufficient, since the increased complexity of
finding a more optimal minimum coloring must be balanced against the incremen-
tal speedup that is obtained in the assembly algorithm. We have not implemented
this approach in our software at the present time, but we consider it to be
promising especially in nonlinear and time-dependent problems where the overhead
of generating the coloring can be amortized over repeated assemblies on the same
mesh.

581f94’2-8

366 RAMESHNATARAJAN

5. IMPLEMENTATION DETAILS FOR ITERATIVE METHODS

As mentioned earlier, the only part of the iterative method that is not
straightforward to parallelize is the preconditioning, and this section is therefore
devoted to this aspect. In particular, there are two rather special issues that arise
in selecting an appropriate preconditioner for the stiffness matrices generated by a
finite element discretization. First, the data structures describing the mesh are ele-
ment-oriented rather than node-oriented, and especially for irregular domains, these
nodes may be numbered in a fairly arbitrary way. Second, the essential boundary
conditions are enforced directly in the global matrix after assembly, by modifying
the appropriate rows so as to trivially yield the correct boundary values upon solu-
tion. These two considerations make it difficult to identify a sparsity pattern in the
global stiffness matrix, even though this structure would be evident in the invariably
carefully-chosen ordering of the equivalent finite-difference formulation. Therefore,
without further analysis, it is not directly possible to use some of the block-based
preconditioners that have proved so attractive in the finite difference setting, espe-
cially for structured problems on regular meshes. Our feeling is that the selection
of the preconditioner should not detract from the flexibility of the finite element
formulation, and should be carried out without any a priori assumptions on the
sparsity structure of the matrix, especially if this can be achieved without sacrificing
efficiency in any way.

One class of well-known, general-purpose preconditioners can be derived from an
incomplete LU factorization of the iteration matrix (assuming this factorization
exists, see Meijerink and Van der Vorst [171; Kershaw [151). The advantage of
these preconditioners is that they can be economically computed by limiting the
amount of “fill-in” to a fixed sparsity pattern, which is often simply that of the
original matrix itself. Furthermore, their use in the inner loop of the iterative
method requires just a sparse triangular forward and backward solve, and this has
the same complexity as the sparse matrix-vector multiplication, although it is not
so readily parallelizable at first sight.

However, Ashcroft and Grimes [2] have shown that for certain very regular
node orderings generated from finite-difference discretizations, that a careful data
dependency analysis can be carried out to obtain a stage-wise partitioning of the
relevant computations in the preconditioner. In each such stage, there is substantial
medium-grain concurrency on the average, while successive stages have to be
executed sequentially. Their study was directed towards vectorization, but the basic
issues on a parallel computer are the same.

We show how this “wavefront” approach to parallel preconditioning can be
extended to general sparse matrices through an automatic data-dependency analysis
of the underlying computation graph. This analysis is carried out for the incomplete
factorization as well as for the sparse triangular solves in a separate preprocessing
step, and the results are saved so that the actual numerics can subsequently be
repeatedly performed with very little overhead. The schedule for the sparse
triangular solves, for example, is reused in each step of the iterative algorithm when

PARALLEL FINITE ELEMENTS 367

the preconditioner is applied. The preprocessing for the incomplete factorization is
useful in time-dependent or nonlinear problems, where this computation must be
carried out repeatedly for a matrix with the same sparsity pattern but with different
data in it, so that the same schedule can be reused.

The present effort is also motivated by the work of Baxter et al. [3], who present
experimental speedup results for the parallelization of the sparse triangular solves on
an Encore Multimax. After the results in this paper had been obtained, we also became
aware of other related work. Anderson and Saad [1] have described level-scheduling
algorithms similar to that used here for the sparse triangular solves, and have obtained
experimental results on an Alliant FX/8 for various test matrices in the Boeing-Harwell
test collection (see also Saad [21]). Hammond and Schreiber [141 have also con-
sidered similar experiments on an Encore Multimax, and in particular, have discussed
two algorithms, which they term static and dynamic scheduling, respectively, showing
that the former has less runtime synchronization overhead while the latter provides
better processor utilization. The approach for the triangular solves that we have
outlined in the previous paragraph, is intermediate to these two approaches, and it
tries to simultaneously provide the performance benefits of both these alternatives.

Our present work also complements and extends the earlier work in some other
directions. First, we show the relevance of automatically performing the paralleliza-
tion analysis so that it is not necessary to sacrifice the flexibility in mesh generation
and assembly that is intrinsic to the finite element method. Second, we show that
the preprocessing algorithms can be also parallelized, although in practice this may
not be so critical since the sequential algorithms are both quite efficient and have
their cost amortized. Nevertheless, it does lead to some interesting parallel
programming issues that are discussed below. Third, we also consider the
parallelization of the incomplete factorization algorithm, an aspect that also has not
been explicitly treated in the previous work; again perhaps the cost of this phase is
also amortized. However, our measurements do show the importance of achieving
good speedups here, for the overall efficiency of the application. The primary
novelty of this aspect of our implementation is the simple and inexpensive scheme
that is used to avoid race conditions on the shared data, in order to make it
suitable for parallel environments without cache-coherence synchronization.

The algorithms given below are described in terms of a sparse matrix T of order
n, with m non-zero entries. For the stiffness matrices generated from finite element
discretizations, we usually have the case that n <m < n2. We assume that T is stored
in the standard row pointer-column index format, but note that in this format, the
entries of a given row of T can be accessed in constant time, while access to the
entries of a given column will require O(m) operations. Since efficient access to the
column entries of T is essential to our algorithms, we maintain, in addition, a
separate representation of the sparsity pattern of T in a column pointer-row index
format. This representation requires an additional m + n integers beyond the m + n

integers and m reals that are used for storing the original matrix, and is very
efficiently computed from the original representation using a linear O(m) transposi-
tion sort algorithm (Gustavson [9]).

368 RAMESH NATARAJAN

The basic primitive tasks in the parallel implementation are the following
routines in which certain operations on the rows of T are performed, and which we
assume to be efficiently coded to exploit sparsity:

1. rowscl(j), performs the scaling operation T,,, t T,,,/T,, i forj < i < n, j being
given.

2. rowupd(j, k), performs the update operation Tk,; t Tk,, - Tk, j x T,,, for all
j < id n, j and k are given. We term j and k as the pivot and the target row
indices, respectively.

3. dot(i, js, je, 6) computes the dot-product of row i of T and a vector h; i.e.,
it returns Ci T,, ;h, for js 6 j <,je, and if js > ,je it returns 0.

These primitive routines are assumed to be indivisible, since in the usual case, we
expect the granularity of work in them to be insufficient for amortizing paralleliza-
tion overheads. This assumption may not true either if the target multiprocessor
can exploit very line-grain nested parallelism, or if the number of entries in a sparse
row is relatively large, but in this case, these primitive routines can also be trivially
parallelized without affecting the present discussion in any way.

The sequential row-oriented algorithms for the incomplete factorization, and the
forward and backward sparse triangular solves using these routines are given
below:

incomplete factorization:
forj=l,n-1 do

call rowscl(j)
fork=j+l,n do
call rowupd(j, k)
enddo

enddo

forward triangular solve:
for i=l,n do

t=dot(i, 1, i- 1, h)
bit (bi- t)/Ti,i

enddo

backward triangular solve:
for i=n-1, 1 step -1 do

b, t b, - dot(i, i + 1, n, b)
enddo

The row-update operation in the inner loop of the incomplete factorization algo-
rithm is performed only if Tk,i is non-zero, and as such the implementation shown
above is inefficient and would not be used in practice; it has complexity ~(Fz”) due
to program looping alone, irrespective of how many inner-loop updates are actually
performed. In fact, algorithms whose complexity is 0(m) can be obtained; a sim-
plified uniprocessor version of our parallel implementation is one such algorithm.

PARALLEL FINITE ELEMENTS 369

The parallelization of the forward solve algorithm follows directly from the
observation that for a sparse triangular matrix it is possible to concurrently
schedule some of the outer loop iterations, taking care to maintain the storage-
dependencies implied by the sequential algorithm. Consider the directed graph
G, = (Vi, E,), where the nodes V, correspond to rows of T, and there is an edge
from node i to node j in G, whenever T,,, # 0, i < j d n. We denote the cardinalities,
IE, (= m, < m and / V, 1 = n. The directed graph G, merely denotes the sparsity
structure of the lower-triangle of T, and is therefore directly represented by the
sparse matrix data structure used for it.

The algorithm for determining a level partitioning of the outer loop iterations for
concurrent scheduling requires the following shared integer arrays and counters as
workspace (Note. All arrays are dimensioned for the worst-case storage require-
ment):

1. ZnEdge(i), length n + I, for the predecessor counts of each vertex in G,.

2. Level(i), length n + 1, which eventually holds a list of vertices ordered in
the sequence in which they will be executed.

3. LeuPt(,j), length n + 1, holds pointers into the array Level(i), so that all
vertices from Level(LevPt(j)) to Level(LeuPt(j + 1) - 1) can be concurrently
scheduled in thejth sequential step.

4. nverts, counter, for the number of vertices listed in the array Level.

5. nlev, counter, for the number of levels listed in the array LevPr.

The algorithm simply carries out a topological sort of the vertices of the directed
graph G1. It proceeds by recursively visiting the successors of all the vertices at a
given level and decreasing their predecessor counts. When the predecessor count of
a successor vertex becomes zero, it is added to the list in Level:

1. For each vertex i E I’, , determine the predecessor vertex count and store
the value in ZnEdge(i)

2. Locate the source vertex (we assume only one such vertex exists) and place
it in Let&(1). Also set LevPt(1) = 1 and initialize nlrv and nverts to 0 and 1, respec-
tively

3. Until all the nodes have been placed in the list do the following

(a) Set nlev + nlev + 1, LevPt(nlev + 1) +- nverts + 1.

(b) If nverts = n, then we are done. Exit.

(c) Visit all the successor vertices of the vertices listed in Level(LevPt(nlev))
to Level(LevPr(nlev + 1) - 1) and decrement their predecessor counts in
the array InEdge by 1. If the predecessor count becomes 0, then add the
vertex to the list in Level and set nverts t nverts + 1.

(d) Go to Step (a).

4. End.

370 RAMESH NATARAJAN

A fully parallel implementation of this algorithm is possible by noting that Step (3~)
above can be executed as a parallel DO-loop if a non-blocking memory instruction
such as the Fetch-and-Add is used to modify the locations in InEdge and the coun-
ter noerts, respectively. On ACE, the Fetch-and-Add instruction is not supported in
hardware, but is available through software emulation and the run-time library
defaults to a critical-section implementation. The overhead of this critical section,
is exactly why we compute the schedule as a preprocessing step, rather than perfor-
ming the scheduling directly during the numerical computation of the triangular
solve.

The actual numerical computation of the forward triangular solve with this
schedule is carried out as follows

parallel forward solve:
for ilev = 1, nlev step 1 seqdo

for il= LevPt(ileu), LevPt(ilev + 1) - 1 pardo
i + Level(il)

bit (h,-dot(i, 1, i- 1, b))/Ti,i
endpardo

endseqdo

The algorithm for the back triangular solve is very similar, except that a directed
graph G, = (V,, E2) which is generated by the non-zero entries in the upper-triangle
of T is used. The procedure closely follows the description for the parallelization of
the forward solve given above.

We now turn to the parallelization of the incomplete factorization. One
straightforward approach starting from the sequential algorithm is to note that the
individual row-updates in the inner loop are independent, and can therefore be
performed in parallel. For sparse matrices, however, additional parallelism can be
obtained by scheduling some of the outer loop iterations concurrently. The data
dependency in the sequential algorithm that must be respected is that a given row
j becomes an eligible pivot row and can begin updating other rows as soon as it
is updated by all rows k with T,,, # 0, k < j. It is easy to see that the earliest oppor-
tunity at which a given row j is an eligible pivot row is determined exactly by the
level-partitioning computed for the graph in the parallel forward solve algorithm,
and we therefore assume all the required information to be available in the arrays
Level and LevPt, and in the shared counter nlev. The only additional difficulty is
that two different pivot rows, with indices say j, and j,, may simultaneously try to
update the same target row, leading to multiple-writers on the same segment of
shared data.

The first approach to resolve this difficulty is to synchronize memory accesses to
ensure mutually-exclusive, atomic writes on the relevant shared memory locations.
This approach will clearly only be effective if a fast (preferably hardware-imple-
mented) synchronization primitive is available. A variant of this approach is to use
a critical section for an entire row update operation, which leads to a somewhat
larger granularity of work per synchronization, but this, however, can be offset by

PARALLEL FINITE ELEMENTS 371

the fact that the synchronization-waiting due to process contention at such a criti-
cal section is also correspondingly increased.

The second approach that may be used requires no additional synchronization
for the memory updates. It works by ensuring that if at all there is a possibility of
a similtaneous update on the same target row by two different source rows, then
these updates are performed on the same processor. This enforces the sequentiality
of these updates and takes care of the multiple-writers problem. The most conser-
vative algorithm for implementing this approach is one which we term fuzy-evalua-

Con, where updates to a given target row are delayed until all the source rows that
will modify it have become eligible pivot rows; all updates to this target row are
then scheduled together for execution on a single processor. The disadvantage of
this approach can easily be seen with a few test execution graphs; by delaying
updates in this way we obtain a longer critical path so that the execution time is
increased irrespective of the number of processors that are used. At the same time,
a critical path analysis alone is inconclusive, given the reduction in the synchroniza-
tion cost, the better local memory utilization, and finally, the smaller gather-scatter
overhead that is realized when multiple updates on a target row are performed
sequentially on a single processor.

The appropriate algorithm in this situation of competing efficiency trade-offs
therefore depends on several issues, including the sparsity structure of matrix, the
relative latencies to local and global memory, and the cost of synchronization. The
approach that we have taken here is a novel hybrid of the two possible schemes
outlined above. In it we use the aggressive scheduling of target row updates to
obtain the shorter critical paths characteristic of the first method. We also perform
a preprocessing analysis in which the possible simultaneous update of the same
target row are identified and scheduled for execution on the same processor, in
order to obtain the low synchronization costs and better local memory utilization
of the second method. This algorithm which is described in further detail below
requires a list of edge-pairs (Source, Target) which identify the source and target
row indices for each row-update operation, along with an associated list Group,
which identifies edge-pairs with the same target row index for grouped execution on
the same processor. The following integer arrays and counters are required as
shared workspace:

1. Source(i), length m, for the list of source row indices

2. Target(i), length m, for the list of corresponding target row indices

3. Group(i), length m, contains flags for each pair in the Source and Target
lists; if 2 1, it indicates the number of succeeding edge-pairs that have the same
target row index; if 0 it indicates that the associated edge-pair has the same target
row index as a preceding edge-pair.

4. LisPt(i), length n + 1, pointers into the Source and Target lists identifying
edge-pairs that can be scheduled for concurrent execution of the corresponding row
updates.

372 RAMESH NATARAJAN

5. nedge, contains the number of edges that have been placed on the Source
and Target lists, respectively.

The algorithm then proceeds as follows:

1. Set nedge = 0, ilev = 0, and LkPt(1) = I. Then do the following:

(a) Set ilev t ilev + 1. If ifeu = nfev, then we are done. Exit.

(b) Visit each vertex j in the list Leuel(LevPt(ilev)) and
Level(LevPt(ilev + 1) - 1). For each edge emanating from vertex ,j,
identify the target vertex k. Set nedge c nedge + 1, and Source(nedge)

= j, Target(nedge) = k.

(c) Set LisPt(ileo + 1) to the number of edges added in Step (b) above.

(d) Go to Step (a).

2. For each ifev from 1 to nlev - 1 do the following:

(4

(b)

Sort the entries in Target between the locations LisPt(ilev) and
LisPt(ilev + 1) - 1). Passively move the corresponding entries in
Source. This step is designed to move all the edges with the same target
vertex within the same level into contiguous locations for easy iden-
tification.

Scan the sorted entries of Target between the locations LisPt(ilev) and
LisPt(iZev + 1) - 1 and count multiple entries. If the count is 1, then set
the corresponding entry in Group with the value 1. Otherwise, if the
count is nn > 1, then set the first corresponding entry in Group equal to
nn and the next nn - 1 entries to 0.

In the uniprocessor implementation, step (2) is unnecessary since then the issue of
write conflicts on shared data does not arise. Again, note that the use of the Fetch-
and-Add primitive (or a critical section) would allow Step l(b) above to be
implemented using a parallel DO-loop. Step (2) on the other hand, is seen to be
fully parallel over each level.

The actual numerical evaluation of the incomplete factors can now be carried out
using the following procedure:

parallel incomplete factorization:
for ilev = 1, nlev - 1 seqdo

for i = LevPt(ilev), LevPt(ilev + 1) - 1 pardo
j + LevPt(i)
call rowscl(,j)

endpardo
barrier
for i = LisPt(ilev), LisPt(ileu + 1) - 1 pardo

if (Group(j) # 0) then

PARALLEL FINITE ELEMENTS 373

for ig = i, i + Group(j) - 1 seqdo

j +- Source(ig)
k c Target(ig)

call rowupd(j, k)
endseqdo

endif
endpardo

endseqdo

In this algorithm, whenever multiple updates are performed on the same target
row in the innermost loop, i.e., when the value of Group(j) is greater than one, the
target row may be copied into local memory and held in expanded form between
updates to reduce the latency and the number of gather-scatter operations that are
required in this update.

The black-box approach to parallel preconditioning described here can be
generalized further, particularly towards internally restructuring the stiffness matrix
so that a preconditioner with either more parallelism or better convergence proper-
ties can be obtained. These two considerations can often conflict, as is well known
for the matrix generated from the finite-difference discretization of the two-dimen-
sional Laplacian operator with a 5-point stencil on a rectangular domain. For the
SSOR and point-incomplete-factorization preconditioners, the lexicographic nodal
ordering provides much less parallelism than the red-black nodal ordering in the
application of the preconditioner. However, the red-black preconditioner has a
much slower rate of convergence, and this trade-off has to be taken into account
in assessing its overall effectiveness. Schrieber and Tang [23] have suggested the
use of mesh coloring algorithms to automatically generate suitable parallel incom-
plete-factorization preconditioners for an arbitrary finite element mesh, but they do
not implement a program. In any event, the effectiveness of the parallel precondi-
tioners obtained by restructuring in this way is an interesting open issue.

6. DISCUSSION OF EXPERIMENTAL RESULTS

In this section we present experimental timing measurements on ACE, for our
programs with some model problems specialized from the general formulation of
Section 2. These model problems use regular domains and discretizations only for
simplicity of programming and clarity of exposition; the methods are clearly
applicable to more general situations.

A. Model Problem ,for Convection-Diffusion Equation

The following problem was solved on the domain {(x, JJ) :0 < K, J’ < 1)

374 RAMESH NATARAJAN

TABLE I

Timings (in Seconds) for Various Parts of the Program

in the Test Problems of Section 6A

Procs.

Bilinear elements Biquadratic elements

Assem SetUp CWl.Sq Assem Setup CfWlSq

1 50.0 9.6 110.7 103.2 20.6 160.9

2 25.1 7.7 60.7 52.1 15.2 89.5

3 16.9 6.5 43.1 35.1 12.0 64.0

4 12.7 6.1 34.6 26.4 10.7 51.9

5 10.4 6.0 29.7 21.5 10.2 43.9

6 9.0 6.2 26.8 18.7 10.0 39.8

7 7.8 6.3 24.0 15.7 10.0 35.7

where the functionf(x, y) and Dirichlet boundary conditions were chosen to obtain
a known exact solution for c, so that the correctness of the computation could be
verified; these details are not essential to the rest of discussion here.

Two test problems using meshes with 40 x 40 bilinear elements and 20 x 20
biquadratic elements, respectively, were generated, and in each case this leads to
stiffness matrices of order 1681. In both these test problems, starting from a zero
initial guess, 16 iterations of the preconditioned CGS method were sufficient to
reduce the relative 2-norm of the residual below 10-6. The timings obtained for
some of the important phases of the computation are shown in Table I. These
include timings for the assembly of the stiffness matrix (assem), the setting up of the
preconditioner (setup), and the iterative part of the CGS algorithm (consq). The
setup time includes all the preprocessing, as well as the numerical computation of
the incomplete factorization. The timings for consq will depend on the number of
iterations, and hence on the desired solution accuracy. However, since these itera-
tions are all executed sequentially, the speedups computed from these timings will
be independent of the number of iterations.

The speedups for the assembly and the iterative part computed from Table I are
shown plotted in Fig. 1. For the assembly, the departure of the curves from linearity
reflects the increased contention at the critical section when more active processes
are used. The alternative assembly algorithm described in Section 4 might be
preferred in this case, but we have no experimental results for it as yet. The itera-
tions of the CGS algorithm also parallelize well, reflecting the generally highly
parallel nature of the computations in it. As the detailed timings below show, the
drop-off in the efficiency with increasing numbers of processors is due to the rather
small granularity of parallel work for this problem size and, to a certain extent, due
to the limited speedup obtained in the application of the preconditioner. The setup
part has the poorest speedup characteristics, which levels off with more than
three-four processors; this is due to the relatively large synchronization overhead in
this portion of the computation, and it is precisely here that hardware support for
a Fetch-and-Add instruction might have led to greater efficiency.

PARALLEL FINITE ELEMENTS 375

6 -

Convection-Diflusion
0 ASSEM 40x40. bilin
0 CONS0 40x40, bilin
0 ASSEM 20x20. biqued
A CONS0 20x20. biqued

01
0 2 4 6 6

NUMBER OF PROCESSORS

FIG. 1. Speedups for the matrix assembly and the iterative part of the CGS solver for the convection-

diffusion problem.

A low-level breakdown of the execution times for some of the individual routines
in CGS for the biquadratic elements test problem is given in Table II, and speedups
are shown plotted in Fig. 2. These timings include the symbolic preprocessing for
the sparse triangular solves (pssoll) and the actual numerical computation (pssol2),
the symbolic preprocessing for the incomplete factorization (pilul) and the actual
numerical computation (pilu2), and the matrix-vector multiplication (mumuf). The
measurements had to be carried out rather carefully to obtain the two significant
decimal places reported, because of the rather coarse granularity (60 Hz) of the
timer.

TABLE II

Timings (in Seconds) for Some Routines in the CGS Algorithm

for the Biquadratic Elements Test Problem in Section 6A

Procs p.wol I pssol2 pilu I pilu 2 nwmil

2.49 2.85 3.55 12.7 1.84

1.50 1.64 2.16 6.90 0.96
1.21 1.22 1.54 4.74 0.66

1.05 1.02 1.25 3.69 0.50
0.96 0.90 1.08 3.07 0.42

0.90 0.84 0.98 2.68 0.37
0.88 0.8 1 0.90 2.42 0.3 1

376 RAMESH NATARAJAN

1

E3

I
convection-Ditlusion. 20x20 bquad

6-

0 PSSOLl
0 PSSOLZ
0 PlLUl
A PILUZ
v MVYUL

0’ I 1 I

0 2 4 6 6

NUMBER OF PROCESSORS

FIG. 2. Speedups for the preconditioning routines used in the CGS solver for the convection-

diffusion problem for a 20 x 20 biquadratic elements mesh,

From Fig. 2, we see that the speedups obtained for the preprocessing routines
pssoll and pilul in the biquadratic elements case are 2.8 and 3.6, respectively, on
six processors. As expected, the performance in the numerical parts, i.e., in pssol2
and pilu2 is somewhat better; with six processors, speedups of 3.4 and 4.7, respec-
tively, are obtained. The parallel efficiency obtained for pssol2 is especially critical,
since this routine is invoked twice in each iteration of CGS to perform the pre-
conditioning, and the results that we obtain for it are comparable to that reported
in Baxter et al. [3] for problems of equivalent size. The speedup for mumul is 5.0
on six processors, and we attribute the less than perfect speedup for this fully
parallel routine to the small granularity of parallelization.

B. Model Problem for Stokes Equation

In this case, (7~(9) was solved on the domain {(x, y):O<x, y< 1 }, with zero
velocity boundary conditions throughout, except for the top surface y = 1, where
the x-component of the boundary velocity was set to unity. This is the classic
“driven-cavity” problem and the discretization (15) is applicable. Two meshes were
chosen for detailed experimental study. The first mesh consists of 8 x 8 elements and
for it the order of the linear systems solved in the inner and outer iterations was
450 and 64, respectively. The second mesh consists of 16 x 16 elements, and
required linear systems of 1666 and 256 to be solved in the inner and outer itera-
tions, respectively. An absolute convergence criterion of lo-’ for the outer iteration
and lo-* for the inner iteration was used, and these values are appropriate in view
of the discretization error and the scaling of the problem variables. As an

PARALLEL FINITE ELEMENTS 377

TABLE III

The Residual Reduction and the Number of Inner Iterations

for Each Outer Iteration of the IOCG Algorithm in Section 6B

Outer 8 x 8 elements 16 x 16 elements

iter. no Residual norm No. of inner item. Residual norm No. of inner item.

I 0.67e-1 12 0.45e-1 19

2 0.65e-2 12 0.50e-2 19

3 O.l3e-2 12 O.lOe-2 19

4 0.42e-3 10 0.33e-3 15

5 O.l2e-3 9 0.1 Oe-3 12

6 0.48e-4 8 0.28e-4 II

7 O.lOe-4 7 O.l3e-4 IO

8 0.16e-5 7 0.43e-5 9

implementation issue, we mention that the sparse matrix A is actually two separate
copies of the equivalent discrete Laplacian for each velocity component, except for
the different boundary conditions on the top surface. However, the matrix was not
stored in this fashion, but rather the ordering obtained by numbering the
unknowns at each node consecutively was used, which is consistent with the usual
finite element practice of trying to obtain a stiffness matrix of low bandwidth for
direct methods. Note that if the two velocity components are coupled, then the
ordering will not affect the storage requirement in the sparse format, but the incom-
plete factorization preconditioner that is obtained will be different in each case.

The convergence history of the outer iteration of the IOCG algorithm is shown
in Tablr III. It is seen that the number of inner iterations required to reduce the
inner residual to a fixed tolerance decreases by almost a factor of two as better
initial guesses are available during the progress of the outer iteration to con-
vergence. In Table IV, we show the timings and parallel efficiencies for the entire
IOCG algorithm on these two test problems. The corresponding speedups are

TABLE IV

Timings (in Seconds) and Parallel Efficiencies

for the Entire IOCG Algorithm of Section 6B

Procs.
8 x 8 elements 16 x 16 elements

Time EK Time EIT.

1 301.2 1.00 1796.5 I .oo

2 183.2 0.82 1007.0 0.89

3 136.7 0.73 726.1 0.82

4 120.5 0.62 601.1 0.74

5 105.6 0.57 541.1 0.66

6 99.9 0.50 437.0 0.69

7 97.3 0.44

378 RAMESH NATARAJAN

6 -

0 PSSOLZ
0 PILUl
A PILU2

0’ 1 I I I
0 2 4 6 6

NUMBER OF PROCESSORS

FIG. 3. Speedups for the entire IOCG algorithm for the Stokes equations, Results for two different
mesh sizes are shown.

shown plotted in Fig. 3. The results show, as expected, that the overheads are
reduced for the larger problem size, resulting in higher parallel efficiencies for them.
In this algorithm it is especially critical that the inner conjugate gradient procedure
be implemented efficiently, since it accounts for the dominant cost in the computa-
tion, so that a substantial payoff is obtained from a careful implementation and an
effective preconditioner for it.

One straightforward optimization in the IOCG algorithm results from the fact
that the matrix to be inverted in the inner loop is unchanged between outer itera-
tions, so that its incomplete factorization may be computed once initially, and then
reused in subsequent iterations. Our informal measurements in the specific case of

TABLE V

Timings (in Seconds) for the Incomplete Factorization
Preconditioner Routines in the Inner Loop of IOCG
for the 16 x 16 Elements Test Problem of Section 6B

Procs. pSSOl1 pssol2 pilu 1 pilu2

1 3.74 4.74 6.74 37.97
2 2.40 2.17 4.21 20.15
3 1.88 2.08 3.03 13.72
4 1.69 1.81 2.44 10.57
5 1.52 1.59 2.08 8.69
6 1.41 1.38 1.86 7.36

PARALLEL FINITE ELEMENTS 379

Stokes Equations
0 BXFI
0 16x18

0' I I I
0 2 4 6 0

NUMBER OF PROCESSORS

FIG. 4. Speedup performance of the preconditioning routines in the inner conjugate gradient loop of

the IOCG algorithm for the Stokes equations. Results are for the 16 x 16 mesh.

the 16 x 16 element mesh problem shows the overhead of computing the incomplete
factorization to amount to roughly about 24% of the time of the inner iteration in
the parallel algorithm, so that the potential savings can be quite substantial.

In Table V, we show the timings obtained for the various preconditioning
routines. These results, and the speedups shown in Fig. 4, are similar to those of the
previous subsection. In particular, a continuous decrease in the execution time is
seen as the number of processors is increased in the range studied. For exampie,
with six processors we obtain speedups of 2.65 and 3.62 respectively for the two
symbolic routines pssoll and pilul, and speedups of 3.43 and 5.16 respectively for
the numerical routines pssol2 and pilz.42.

7. SUMMARY AND FUTURE WORK

We have described implementation techniques and experimental results for finite
element applications on a small shared-memory parallel computer. The primary
focus was on the use of polynomial iterative methods with incomplete factorization
preconditioners for solving linear systems of algebraic equations. A strategy for
parallelizing these algorithms while maintaining the intrinsic flexibility of the finite
element method was discussed, and shown experimentally to lead to reasonable
parallel efficiencies on the ACE multiprocessor system. Overall, the speedup trends
for the rather small problems that we have studied are encouraging and seem to
demonstrate the viability of the approach developed here for realistic, large-scale

380 RAMESH NATARAJAN

applications on moderately parallel, shared memory computers. Since the architec-
tural parameters of various parallel computers will differ widely, it is difftcult to
obtain a truly general implementation that is equally efficient across the range of
target architectures. Nevertheless, we believe that our approach will be efficient
without further modification on many of these architectures, and we are currently
exploring this aspect for more realistic “production-type” applications on commer-
cial supercomputers. In addition, the model problems of this paper may be
generalized by using a building-block approach to develop parallel implementation
strategies for more complicated applications. For example, the Stokes equation
solver can be used in the inner loop of a Picard-type nonlinear iteration for solving
the full Navier-Stokes equations. Similarly, the methods for the convection-diffu-
sion equation may be extended to multicomponent transport problems or even to
problems that involve both flow and transport (such as te Boussinesq equations) by
suitably combining the various algorithms described in this paper.

APPENDIX 1

function ddot(n,dx,dy) /* inner-product of two shared arrays */

@SHARED /ddotxx/ dglb

real dglb /* shared variable declaration */

@ENDSHARED

real dx(l),dy(l),dloc

integer i,n,ichnk

@SERBEG

dglb = O.OeO /* one process initializes global variable */

QSEREND

dloc = O.OeO /* all processes initialize private variable */

ichnk = ((n - l)/ QNPROCS) + 1 /* compute chunksize */

@DO 30 i = 1, n, 1 CHUNK = ichnk

dIoc = dloc + dx(i) * dy(i) /* dot-products in parallel */

30 continue

QENDDO30
@LOCK
dglb = dglb + dloc /* sum private values in critical section */

QENDLOCK
@BARRIER /* ensure all processes have updated global counter */

ddot = dglb /* make private copy of dot-product and return it */

return

end

ACKNOWLEDGMENTS

I thank the members of the ACE development group, especially Armando Garcia, for making this

research possible, and Professor S. C. Eisenstat (Yale) for helpful comments on a draft of this paper.

PARALLEL FINITE ELEMENTS 381

REFERENCES

1. E. ANDERSON AND Y. SAAD, IIII. J. High Speed Comput. 1, 13 (1989).
2. C. C. ASHCROFT AND R. G. GRIMES, SIAM J. Sci. Statist. Comput. 9, 122 (1988).
3. D. BAXTER, J. SALTZ, M. SCHULTZ, S. EISENSTAT, AND K. CROWLEY, Yale University Research

Report YALEU/DCS/RR-629, 1988 (unpublished).
4. R. BERNSTEIN AND K. So, IBM T. J. Watson Research Center Technical Report RC 13600, 1988

(unpublished).
5. A. S. BOLMARCICH, IBM T. J. Watson Research Center Technical Report RC 14369, 1989

(unpublished).
6. J. H. BRAMBLE AND J. E. PASCIAK, Marh. Compuf. 50, 1 (1988).
1. C. CUVELIER, A. SEGAL, AND A. A. VAN STEENHOVEN, Finite Element Methods and Navier-Stokes

Equafions (Reidel, Dordrecht, 1986).
8. I. S. DUFF, SIAM J. Sci. Statist. Compuf. 5, 270 (1984).
9. F. G. GUSTAVSON, IBM Tech. Discuss. Bull. 16, 351 (1973).

10. M. FORTIN, Inr. J. Numer. Methods Fluids 1, 347 (1981).
11. A. GARCIA, D. FOSTER, AND R. FREITAS, IBM T. J. Watson Research Center Technical Report RC

14491, 1989 (unpublished).
12. V. GIRAUL~ AND P. A. RAVIAKT, Finite Element Approximation of rhe Navier-Slakes Equations,

Lecture Notes in Mathematics, Vol. 749 (Springer-Verlag, Berlin, 1979).
13. L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods (Academic Press, New York, 1981).
14. S. W. HAMMOND AND R. SCHREIBER, RIACS Technical Report 89.24, 1989 (unpublished).
15. D. S. KERSHAW, J. Comp. Phys. 26, 43 (1978).
16. D. R. KINCAID, T. C. OPPE, AND W. D. JOUBEKT, University of Texas at Austin Research Report

CNA-228, 1988 (unpublished).
17. J. A. MEIJERINK ANU H. A. VAN DER VORST, J. Comput. Phys. 44, 134 (1981).
18. R. NATARAJAN, IBM T. J. Watson Research Center Technical Report RC 68072, 1989 (unpublished).
19. J. M. ORTEGA, Introduction to Parallel and Vector solution of Linear Systems (Plenum, New York,

1988).

20. S. PISSANETZKY, Sparse Matrix Technology (Academic Press, New York, 1984).
21. Y. SAAU, SIAM J. Sci. Statisr. Compuf. 10, 1200 (1989).

22. Y. SAAD AND M. H. SCHULTZ, Yale University Research Report YALEU/DCS/TR-425, (1985).
23. R. SCHREIBER AND W. P. TANG, in Proceedings, Symp. Cyber 205 Appl., 1982.

24. P. SONNEVELD, SIAM J. Sci. Starist. Comput. 10, 36 (1989).

25. G. &RANG AND G. J. FIX. An Analysis of the Finite Element Method (Prentice-Hall, Englewood
Cliffs, NJ, 1973).

26. F. THOMASSET, Implementation of Finite Element Meihods,for the Navier-Stokes Equations (Springer-
Verlag, Berlin, 1981).

581,‘9412-9

