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We describe strategies for parallelizing fmite element applications on a shared-memory mul- 
tiprocessor. The applications studied include the ConvectionAiffusion equation, and the 

Stokes equations of low Reynolds number hydrodynamics. The overall approach that we use 

is standard, but with signiiicant restructuring for efficient parallel computation. The primary 
focus is on parallel methods for solving the linear systems of algebraic equations generated by 

the linite element discretization using polynomial iterative solvers preconditioned by incom- 

plete factorizations. The challenging issue is the parallelization of the preconditioner, espe- 
cially for the unstructured matrices obtained from finite element discretizations, and we 

describe the algorithms developed for this purpose. Specific experimental results obtained with 

our programs on ACE, a prototype R-way, bus-based, shared-memory multiprocessor are 
discussed in detail. CC 1991 Academic Press. Inc 

1. INTRODUCTION 

This paper describes parallelization strategies and experimental results obtained 
on a shared memory multiprocessor for the solution of problems in fluid flow and 
transport phenomena using finite element methods. Our intent in this research is to 
develop general-purpose methods for the complex, computationally-intensive 
problems in this application area. However, in order to emphasize parallel proces- 
sing issues, we only discuss some relatively uncomplicated model problems in this 
paper, focusing primarily instead on the parallelization of iterative methods for 
solving the sparse linear systems of equations that arise from the finite element 
discretization of the underlying continuum problem. Strang and Fix [25] have 
remarked on the widespread use of direct solution methods based on LU decom- 
position in finite element programs. These methods have the following advantages: 
they are relatively robust, they can be used to solve for multiple right-hand sides 
at little additional cost, and they terminate with an answer in a fixed number of 
steps (event though the solution obtained may be inaccurate for poorly conditioned 
matrices). Although much progress has been made in developing direct solution 
methods for very large-scale problems (Duff [S]), the primary difficulty is the till-in 
during elimination, which results in prohibitive computational and storage costs for 
many realistic applications. 
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Iterative solution methods are useful in these large-scale applications because the 
matrix is never modified in them and very little additional storage is required 
beyond that for the original matrix itself. Recent research has led to effective 
iterative algorithms that are robust and rapidly convergent (Hageman and Young 
[13]; Kincaid, Oppe, and Joubert [16]). Notable among these are the so-called 
polynomial iterative algorithms which approximate the solution (or equivalently, 
the residual) from the Krylov subspace of the matrix, generating this subspace in 
such a way that the storage requirement and the work per iteration are kept small. 
These methods are generalizations of the well-known conjugate-gradient and 
Lanczos algorithms for symmetric, positive-definite matrices, and in practice are 
often coupled with effective preconditioning techniques that dramatically improve 
their convergence. Their attractiveness from the parallel processing point of view is 
due to the fact that the basic operations in them are highly regular and easily parti- 
tioned. The most computationally-intensive part is typically a matrix-vector multi- 
plication, an operation that can be heavily optimized on parallel computers. The 
challenge in the parallel implementation of these methods is therefore primarily one 
of devising suitably optimized preconditioners, and in this context, we have insisted 
on the criterion that the uniprocessor performance of the parallel preconditioner be 
comparable to that of the best-known, equivalent sequential preconditioner (Saad 
and Schultz [22]; Ortega [ 193). The determination of the best sequential precondi- 
tioner is itself a complex issue that is highly architecture and problem dependent. 
In this research, therefore, we only report our speedup measurements relative to 
the uniprocessor performance of the same program, with the previous criterion 
ensuring that our results are at least qualitatively consistent. 

The outline of this paper is as follows. Section 2 contains the details of the model 
problems, their finite element discretization, and the iterative algorithms used in 
their solution. Section 3 discusses some general aspects of the parallel architecture 
and software environment, insofar as they influence the choice and efficiency of our 
finite element data structures. Sections 4 and 5 respectively describe the paralleliza- 
tion of the matrix assembly and of the iterative solution algorithms. Section 6 gives 
details of the experimental timings and speedups for our programs on the ACE 
parallel computer system. Section 7 concludes with a summary and indicates areas 
for future research. 

2. THEORETICAL DETAILS 

A. The Convection-D&fusion Equation 

I. The total concentration c of a passive scalar due to diffusion and convec- 
tion within a fluid domain Q with boundary ,Y is given by 

V2c- Peu-Vc=O, (1) 

where u is the stationary velocity field in Q, and Pe is the dimensionless Peclet 
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number. We assume the following boundary conditions on non-intersecting, but 
possibly empty, subsets of Y, 

c= co, on r,, (24 

Vc.n=f, on r2, (2b) 

Vc.n-hc=g, on r3. (2c) 

Here n denotes the unit normal vector on Y = r, u Tz u rj. Conditions (2a) 
and (2b) arise respectively from specifying the concentration and the flux at the 
boundary surface. Condition (2~) arises when a phenomenological transfer model is 
used for the boundary flux (h is a dimensionless Biot number in heat-transfer 
applications). 

II. Consider the function space V= H:(Q) of functions that along with their 
first derivatives are square-integrable in Q and vanish on r, . The weak form of ( 1) 
then corresponds to finding the function c E H’(Q) such that 

?*, [Vc .Vv + Pe(u .Vc) v] dV= Is (Vc. n) u dS, VVE v. (3) 

III. We report on results obtained from a finite element discretization of (3) 
in two-dimensional geometries using two types of elements: (i) a quadrilateral ele- 
ment with 4-point bilinear basis functions; (ii) a quadrangular element with 9-point 
biquadratic basis functions. Both these elements are isoparametrically mapped to a 
square reference element where element integrals are evaluated using 4-point and 
9-point Gaussian quadrature, respectively. 

We expand for c in the terms of the finite element basis functions Qi in the form 

and use Galerkin’s method in (3) to obtain 

[V@; V@, + Pe(u . VGi) @;I dV 

- 
I 

(VQj.n)QidV c,=O, 1 i = 1, ,,.) N. (5) 
s 

The integrals in (5) are evaluated element-by-element and the results assembled 
into a global matrix and right-hand side to yield a system of linear algebraic equa- 
tions of the form 

Ax=b, (6) 

where x= [c,, c2, . . . . cNIT is the vector of unknown nodal values. Essential 
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boundary conditions are then imposed, following standard finite element practice, 
by setting the off-diagonal and diagonal entries in the corresponding row of A to 
zero and unity, respectively, and by appropriately modifying the entries in the 
right-hand side vector so that the known boundary values are trivially obtained in 
the solution process. 

Remark 1. With the standard Galerkin discretization above, a very line mesh is 
required for large values of Pe, to avoid unstable oscillations in the solution. The 
required stability criterion, and alternative Petrov-Galerkin discretization schemes 
that lead to a more stable formulation by using different basis functions for the 
expansion and test function sets, are discussed in Thomasset [26]. 

IV. The stiffness matrix A in (6) is non-symmetric and definite, but when Pe 

is moderate, there are variants of the standard conjugate gradient algorithm that 
seem to work well for it. One of these, which is very straightforward to implement 
and works especially well when preconditioned by a suitable matrix T, is the 
conjugate gradient squared (CGS) algorithm of Sonneveld [24], shown below. 

conjugate gradient squared (CGS): 
x0 = initial solution guess 
s,=T ‘(h-Ax,) 

po=so 

4o=so 
po=s;.so 

for k = 0, 1, . . . . until convergence do 
begin 

ok = ST. T ~- ’ Aq, 

uk = Pkbk 

fk=Pk-UkTp'Aqk 

&=Pk+fk 
x,+,=x,+&g, 
s k+j =sk-XkT-‘Agk 

T 
Pk+l=*yo’Sk+l 

Pk=Pk+l/Pk 

Pk+l=Sk+l+bkfk 

qk+l=Pk+l +pk(.fk+bkqk) 

enddo 

The unpreconditioned version of the algorithm requires six vectors of length N, 
in addition to the storage for the matrix, solution vector, and right-hand side. The 
arithmetic work per iteration consists of two matrix-vector multiplications, seven 
saxpy’s and two dot-product operations. It has the advantage over some other 
methods of not requiring a matrix-vector multiply with the transposed matrix, 
which can be useful, for example, when the matrix is stored in the sparse format of 
Section 4. 
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B. The Stokes Equations 

I. The creeping flow of an incompressible fluid in a domain D with bounding 
surface Y is described by the following dimensionless equations 

-Vp+V-r=f, 

V.u=Q, 

(7) 

(8) 

where p, r, and u denote the pressure, stress tensor, and velocity, respectively, and 
f is a volumetric body force. Equation (7) is also relevant when a Picard iterative 
scheme is used on the full steady Navier-Stokes equations by approximating it as 
a sequence of simpler Stokes problems. In that case f would also contain 
approximations to the nonlinear convective terms from the previous iteration. The 
stress tensor is given for a Newtonian fluid by 

r=Vu+(VU)T. (9) 

This set of equations must satisfy the boundary conditions on Y = r, u r2, 

u = u(), on r,, 

-pn+r-n=g, on f,, 

where n denotes the unit normal vector on the boundary surface, and u0 and g are 
the velocity and traction boundary conditions. We make a few remarks on the 
boundary conditions. 

Remark 2. If Z-1 = (25, then solutions u to (7))(9) are unique only up to an 
arbitrary rigid motion. Then f must be consistent with the boundary condition 
on Tz. 

Remark 3. If r2 #@ and r, n r2 # 0, then we have a free-boundary on 
T, n r,. This requires an additional boundary condition on r2, essentially stating 
that this bounding surface is also a material surface of the fluid. We have not 
considered this case in the computations presented in this paper. 

Remark 4. If r, = Y, then the boundary velocity u0 must be consistent with the 
global conservation of mass, i.e., j,Y uO. n dS = 0. 

II. The weak version of this problem can be formulated as follows. Consider 
the function space V= (HA(a))” consisting of vector functions vanishing on rl, 
whose components along with their first derivatives are square-integrable in Q. Also 
consider the function space Q = L*(Q) consisting of square-integrable functions in 
R (Note. If the pressure is determined only up to an arbitrary constant, then the 
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space Q is defined module the space of constant functions on Sz). The weak form 
of (7)-(9) then corresponds to finding a pair (u, p) in (H’(Q))” x Q such that 

lQ [r:Vv-pV.v]dV= -jQf.vdV-[L, [pn-t.n] .vdS, VVG v, (10) 

[ (V.u)qdl’=O, VqeQ. 
JR 

(11) 

Remark 5. The normal stress condition appears as the natural boundary condi- 
tion in (lo), but this is not so useful when only velocity boundary conditions are 
imposed. An alternative formulation obtained by substituting the divergence condi- 
tion (8) into (7) yields the weak form 

I [Vu:Vv- pV.v] dV 
R 

= - f.vdV- [pn-Vu.n].vdS, VVE v, (12) 

which is useful in Cartesian coordinates where the integrand involving u and v sim- 
plifies to yield copies of the well-known weak form of the Laplacian operator for 
each scalar velocity component. 

III. The discretization is carried out using the nine-point Crouzeix-Raviart 
quadrilateral element on which velocity and pressure are approximated by con- 
tinuous biquadratic and piecewise-continuous linear basis functions, respectively. It 
has been shown that this basis yields discrete approximations to the spaces V and 
Q, that satisfy the Babuska-Brezzi condition required for the solvability of (10) and 
(11) (Fortin [lo]; Girault and Raviart [12]). 

For computational purposes, this quadrilateral is mapped to a square reference 
element on which the element integrals are evaluated using a 9-point Gaussian 
quadrature rule. There are nine nodal variables for each velocity component in this 
element-its values at the four vertices, at the four mid-edge nodes, and at the 
centroid. There are three nodal variables for the pressure in each element, which are 
its value and those of its derivatives at the centroid node (note that the pressure 
derivative is constant on each element). This leads to a total of 21 unknowns per 
element in two dimensions, which can be reduced to 17 unknowns per element by 
eliminating the unknown velocities and the pressure derivatives at the centroid 
node prior to element assembly. This procedure can be carried out stably, by 
eliminating the pressure gradient unknowns from the components of the momen- 
tum residual equation, and the velocity unknowns from the components of the con- 
tinuity residual equation. The element-level substructuring is most useful since the 
number of unknowns and the bandwidth of the stiffness matrix is reduced without 
in any way affecting the solution accuracy. Thus, letting M and N denote the 
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number of centroid and non-centroid nodes, respectively, in the finite element mesh, 
we expand for u and p in the form 

N 

u= 1 UiQjl, P= 5 Ply;, 
r=l ,=I 

where Qi, !Pi are the basis functions that are obtained from the original Crouzeix- 
Raviart basis set after element-level substructuring. 

The use of Galerkin’s method then yields 

i c t:VQie, -pV. (Qjek)] dV 

= - 
.r 

f.vdV+ 
j 

[z.n.@,ek-p@iek.n] dS, i=l iV, , . . . . (13) 
R s 

I (V.u) YidV=O, i= 1, . . . . M. (14) 
R 

The alternative form of (13), obtained from the weak formulation in (12), is given 

by 

I [Vu:V@,e, - pV. (@,ek)] dV 
R 

= -1 f.vdV+[ [Vu.n.@ie,-p@iek.n] dS, i= 1, . . . . N. (15) 
R s 

IV. The weak form in (13)-( 14) leads to a saddle-point variational problem 
and the standard iterative solution technique devised for minimization problems are 
not readily usable for it. We briefly comment on two alternative schemes that to 
lead to a minimization problem, but which have other difficulties associated with 
them especially in the context of iterative methods. The first scheme chooses an 
expansion basis set for u from the solenoidal subspace V. c V. The derivation of 
elements which satisfy this property is difficult and requires the introduction of new 
degrees of freedom for which appropriate boundary conditions must be obtained 
(see Cuvelier, Segal, and Steenhoven [7]). The difficulty here is in finding suitable 
good initial guesses that satisfy this divergence-free condition for use with linear 
iterative solvers. 

A second scheme is to introduce a penalty parameter E ‘, E < 1 into the problem 
formulation; i.e., instead of (11) we write 

i (V.u+cp)qdV=O, VqEQ. (16) 
JR 
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Note that this is equivalent to artificially introducing a small amount of com- 
pressibility into the problem. Using Galerkin’s method, with the basis function 
expansions for u and p in (12) and (13), and carrying out the finite element 
assembly, we obtain a set of equations of the form 

AU+ BTP=b,, (17a) 

BU+EDP= b,, (17b) 

in which A is a N x N symmetric, positive-definite matrix, B is a M x N matrix, and 
D is a M x M diagonal matrix. Eliminating P by block Gaussian elimination, we 
obtain 

AU=(A+E-‘B~D~‘B)U=~,-B~D-‘~~. (18) 

Note that A^ is also symmetric, positive-definite, and when piecewise-constant basis 
functions are used for the pressure, this matrix can be directly assembled element- 
by-element. For small E, A^ is very ill-conditioned, but this is not a serious problem 
when direct solution methods are used, since the magnitude of E can be adjusted to 
obtain a reasonable compromise between the round-off error growth and the 
approximation of the incompressibility condition. For iterative methods, however, 
this will result in the number of iterations required for convergence becoming very 
large and our experience has been that even with preconditioning it is difficult to 
obtain an effective algorithm with this approach. 

V. Performing the block Gaussian-elimination on ( 17) in an alternative way 
(and setting E = 0) leads to a formulation that avoids the difficulties associated with 
matrix ill-conditioning 

AU=b,-BTP, 

BA ‘BTP=BA lb,-b,. 

This yields two uncoupled positive-definite systems that can be solved successively 
for P and U in that order. An inner-outer iterative approach is used in solving 
(19b). The outer loop requiring the inversion of (BA ~ ‘BT) is carried out by a 
standard conjugate-gradient algorithm. Each iteration in this algorithm requires the 
action of (BA - ‘BT) on a vector and the inversion of A required in this step is 
carried out using preconditioned conjugate-gradient in an inner loop. The algo- 
rithm for the outer iteration is as follows 

inner-outer conjugate gradient algorithm (IOCG) 
initialize outer iteration 
x, =A--lb, 
r,=Bx,-b, 
x20 = initial solution guess 
r ,o=BTx,,, 
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x,=Aplrlo 
s,=r,-Bx, 

po=so 
yo = s;. so 

for k = 0, 1, . . . . until convergence do 
begin 

rlk=BTpk 
x, =Ap’rlk 
qk = Bx, 

Sk= P&h 
a/, = y&k 

,xZk+l =X2k+ClkPk 

Sk+l=Sk-rkqk 

~k+l=S;+,.Sk+l 

Pk+I =Yk+Ihk 

Pk+I=Sk+I+bk+IPk 

enddo 

finish up by solving for x, 
rl = 6, - BTx,, 
x, = A-‘r, 

This implementation of IOCG requires four vectors of length M + N (assuming 
that the inner conjugate gradient is unpreconditioned), besides the storage that is 
used for A, B, Br, and the solution and right-hand side vectors. We store BT 
explicitly in order to obtain an efficient matrix-vector multiply with it. Each itera- 
tion of the unpreconditioned inner conjugate gradient requires one matrix-vector 
multiply, and two dot-products, and three saxpy’s on vectors of length N. The 
requirements of the outer conjugate gradient iteration are roughly similar, two 
matrix-vector multiplys with B and BT are required, and two dot-products and four 
saxpy’s on vectors of length M. 

One nice feature of the formulation given here is that the inner conjugate 
gradient benefits from the progress of the outer loop, so that especially in the later 
stages, when good initial guesses are available, very few inner iterations are 
required to reduce the residual to a prescribed tolerance, Thus, even though sparse 
Cholesky factorization methods are also attractive for the inversion of A, the 
present scheme requires less storage, better exploits the information in good initial 
guesses, and is more amenable to a parallel implementation. However, care must be 
taken to ensure that the inner iteration is converged to sufficient accuracy so that 
the matrix that is inverted in each outer iteration is unchanged, since this property 
is essential for the convergence of the outer conjugate gradient iteration. Although 
in practice we have not found this to be a problem, we note that Bramble and 
Pasciak [IS] have proposed an alternate algorithm for (19) that avoids this dif- 
ficulty by not using the inner-outer formulation at all; however, their approach 
does require the estimation of an additional “scaling” parameter. 



PARALLEL FINITE ELEMENTS 361 

3. PARALLEL ARCHITECTURE AND SOFTWARE CONSIDERATIONS 

Our work is directed towards the asynchronous, shared-memory class of parallel 
computers, specifically the ACE workstation multiprocessor developed at the IBM 
T. J. Watson Research Center, which has recently been the focus of our experimen- 
tal efforts. The ACE architecture is comprised of eight 32-bit processors rated at 
one MIPS, with each processor having about 8 Mb of local memory. These pro- 
cessors are connected by a 80 Mb/s bus to each other and to a global memory that 
can be extended to 64 MB. The various design aspects of the memory configuration, 
such as the interleaving used, and the nominal relative latencies of local and global 
memory, can be found along with the other architectural details, in the paper by 
Garcia, Foster, and Freitas [ 111. Since ACE is not a production scientific com- 
puter but an evolving experimental prototype, we have not made absolute perfor- 
mance a crucial issue in this research. In addition, we have avoided using any 
machine-dependent parameterizations that might affect the generality and efficiency 
of our programs on other shared memory parallel computers or on future versions 
of the ACE architecture itself. 

Our parallel programs are written using the Preface/Mach/EPEX environment 
(Bernstein and So [4]; Bolmarcich [S]). This environment provides a set of 
parallel constructs that can be embedded by the programmer in otherwise standard, 
sequential FORTRAN code to allow the specification of shared and private data, 
and to indicate the parallel flow of control through the code. These constructs are 
identified by a preprocessor and replaced in-line by appropriate subroutine calls to 
a run-time synchronization library. The parallel control constructs used include: 

1. serial sections, that identify code executed by only one processor 

2. parallel loops, for the self-scheduled execution of independent iterations of 
a FORTRAN DO-loop 

3. critical sections, that identify code executed by only one processor at a time 

4. harriers, at which all processes must synchronize before proceeding with 
further execution. 

Since these are all standard parallel programming constructs, we expect their 
functionality to be reproducible in other environments. 

We illustrate the style, syntax, and efficiency of our parallel programs with a sim- 
ple example. Consider some of the operations on shared vector operands that might 
be repeatedly used in iterative algorithms, such as dot-products, saxpy’s, scalar nor- 
malization, vector-to-vector copy, and so on. These are all parallelized by a run- 
time “strip-mining” of the operands among the processors, an approach that should 
yield close to perfect speedups with sufficiently long operands. An example of a 
routine written in this style is shown in Appendix 1, where the stride one dot- 
product of two shared vectors is computed, and the result is returned as a private 
value to each process. All the parallel constructs mentioned earlier are used in this 
example (Note. the @ symbol identifies keywords for the preprocessor). 
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The various factors that affect the parallel efficiency of this routine are described 
below, assuming throughout that the vector lengths are large relative to the number 
of processors. First, we have the extra work due to simply inserting the code for the 
parallel constructs, which can be measured by comparing the uniprocessor execu- 
tion time of the parallel program with that of the original sequential code. Since 
each parallel construct adds only a few synchronization instructions to the original 
sequential program, it is expected and confirmed by experiments that this overhead 
is negligible. 

Second, we have the overhead due to uneven partitioning of the work during 
multiprocessor execution, which manifests itself as the time spent by processes 
waiting at synchronization points, such as barriers, serial sections, and critical 
sections. This overhead is small in the dot-product example for a variety of reasons; 
few instructions are executed in explicitly-protected mode, and the number of 
accesses to implicitly-protected regions of code, such as the parallel DO-loop 
scheduler are reduced by chunking iterations. Finally, in the interval between the 
two global synchronizations in the routine where the largest amount of work is 
performed, with each process computing its portion of the parallel dot-product, 
there is a very even division of work (especially when the vector length is a multiple 
of the number of processors). 

Third, random or non-reproducible environmental effects in an asynchronous 
MIMD environment can lead to uneven execution times between global syn- 
chronizations. These effects generally have their origins in hardware resource con- 
tention, such as bus and memory bank conflicts, and process multiplexing. Their 
impact in a shared memory environment can be reduced by using a smaller task 
granularity. For example, the use of a smaller chunksize in the parallel DO-loop 
enables faster processors to take up more of the work load and compensate for 
variations in the individual processing speeds. These overheads are similar to those 
described in the previous paragraph in terms of their effect being manifested as a 
work-load imbalance; however, they differ in that they depend more intimately on 
the architectural organization and balance, and on the run-time environment, 
rather than on the programmer-induced partitioning of work. This makes it very 
difficult to obtain an adequate general characterization for this class of overheads. 
However, our measurements are always carried out in single-user mode with fewer 
processes than processors, and a “master” processor is always left free to perform 
the various time-shared operating system chores unrelated to the application. In 
addition, various local memory optimizations essential to obtaining good perfor- 
mance also have the desirable side-effect of reducing memory and bus contention. 
For these reasons, the effect of this class of overheads on our program performance 
is small, and our results are always well reproducible. 

For asymptotically long vector operands, our measurements on ACE show 
parallel efficiencies of over 0.95 for the dot-product programmed as shown in 
Appendix 1. This is quite satisfactory, but it raises the question as to whether it is 
possible to achieve an even better efficiency than this by sectioning array operands 
and distributing them among the processors as private data. The relative merits of 
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these two approaches on the ACE architecture leads to some subtle and interesting 
issues that we have discussed in great detail in a companion paper (Natarajan 
[IS]), from which we summarize briefly. The ACE architecture has been con- 
sciously designed to avoid the high development cost of hardware synchronization 
for maintaining the “cache-consistency” of shared data in the individual local 
memories. Instead, certain operating system assists, akin to demand paging, are 
used in order to reduce the latency by having shared data paged into the local 
memories of individual processors. The effectiveness of these assists, however, can 
be rapidly degraded if the shared data is not very carefully managed. In particular, 
in a straightforward dynamic task-scheduling environment, without further work, a 
low-latency access can only be guaranteed only for the private data. It is our obser- 
vation that in a relatively complicated program, after an initial transient, the ACE 
memory model moves to a state in which the local memories contain only code and 
private data, while the global memory contains only shared data. The relative 
efficiency of global/shared versus distributed/private data structures in this memory 
model is again not obvious. Briefly, global data structures provide programming 
simplicity and generality, and lead to a better processor utilization when the 
workload is uneven, while distributed data structures lead to much lower latencies 
in accessing data. 

In our current program implementations we make the most appropriate choice 
for storing the data structures consistent with these programming trade-offs. For 
example, the stiffness matrix and the various arrays in the linear solvers are 
declared as shared variables for programming convenience, while element matrices, 
whose scope is restricted to a single parallel task are declared as private variables. 
This means that memory accesses to the primary data structures might possibly 
take place at the global memory latency, although in practice, this will be partially 
compensated by the greater generality of usage and the improved load balancing 
that is obtained. In addition, in the present instance, there are some difficulties 
associate with the use of distributed data structures for some of the larger problems, 
since on the ACE machine the size of local memory can become a limitation (par- 
ticularly without the full implementation of the proposed use of global memory as 
an automatic paged store for private-data pages). 

4. MATRIX STORAGE FORMATS AND FINITE ELEMENT ASSEMBLY 

The primary targets for speedup in a finite element program are: (i) the computa- 
tion of element matrices and their assembly into the stiffness matrix; and (ii) the 
solution of linear systems of algebraic equations. On parallel computers, the 
efficiency of both these steps depends crucially on the storage format used for the 
stiffness matrix. We have used the standard storage format for non-symmetric 
sparse matrices in with the nonzero entries are stored row-by-row in a single array. 
An associated array holds the corresponding column index of each entry in the pre- 
vious array, and a third array holds pointers to the location of the first element of 
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each row of the matrix in the first and second arrays. Symmetric matrices are also 
stored in the same format, although it would be sufficient to just store the upper 
or lower triangle. The computational efftciency obtained with the redundant 
representation, particularly in the matrix-vector multiply operation, more than 
compensates for the extra storage used. 

The parallelization of the finite element assembly process is straightforward. Each 
element matrix is computed in parallel and the assembly into the stiffness matrix, 
which is a shared array, is performed in a critical section, thereby ensuring that 
multiple processes do not simultaneously modify the same shared memory location. 

for each element pardo 
call routines to generate element matrix and right-hand sides 
begin critical section 
assemble into stiffness matrix and right-hand side 
end critical section 

endpardo 

The bottleneck here occurs when processes have to wait while another process is 
executing within the critical section. We show here qualitatively that this waiting 
time can be small, particularly in those applications in which the cost of generating 
the element matrices is greater than the cost of the assembly into the global matrix. 
Specifically, consider the case where in each independent iteration in the parallel 
loop, the ratio of the number of instructions executed outside the critical section to 
that executed inside it, exceeds the total number of active processes. Then, during 
execution, each process in its first pass through the loop will be released in 
a staggered manner from the critical section. After this preliminary transient, 
therefore, processes are synchronized so that they encounter no contention on 
subsequent arrivals at the critical section, and the overall execution then proceeds 
practically as though the loop were fully parallel. 

From this argument it is clear that the primary optimization in the assembly 
algorithm is to reduce the transit time for each process through the critical section. 
For example, in the sparse storage format for the stiffness matrix described earlier, 
the row pointer index directly gives the range of storage locations into which each 
entry from the element matrix will be assembled. The exact location in this range 
is then determined by searching the column index list for a match. Since, for each 
row, the column-index array is an ordered list, a binary search algorithm can be 
used and may be faster than the usual linear search. Let CI denote the order of the 
element matrix, and p the number of nonzeroes in a given row of the global matrix. 
The asymptotic cost of the linear and binary search algorithms for the assembly of 
each row of the element matrix are given by O(c$) and O(cr log, fl), respectively. 
However, if these two algorithms are calibrated for ordered lists of various lengths, 
then a simple check of the number of non-zeroes of the appropriate row of the 
global matrix, can provide a runtime determination of the appropriate algorithm to 
be used. Yet another alternative is to use an O(a + fi) linear-time algorithm in 
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which no searching is performed, but which requires an extra temporary vector of 
length equal to the order of the global matrix; as described by Pissanetzky [20], 
this temporary vector is used to set up pointers for directly performing the assembly 
of each row of the element matrix. 

We note that the use of a single critical section in this program is unduly conser- 
vative, and in particular, processes that update mutually-exclusive regions of 
the stiffness matrix are unnecessarily blocked from simultaneous execution. One 
approach around this is to partition the stiffness matrix, say in a block-row 
fashion, and use separate locks for the updates into each block, which will clearly 
reduce the synchronization-waiting at each individual lock. However, this moditica- 
tion does not change the overall number of instructions that are executed in a 
protected mode, but the granularity of work in each individual access to a critical 
section is reduced by having it moved to an inner loop of the matrix assembly. For 
example, in the extreme case when each row of the global matrix has its own lock, 
the storage required for these locks and the cost of merely executing the locking 
instruction itself, can both become significant overheads. 

A different approach is suggested by the underlying problem formulation, which 
indicates that the simultaneous assembly of two element matrices needs to be 
protected by a critical section only if these two elements have common nodes in the 
finite element mesh. An element interference graph may be constructed whose ver- 
tices correspond to elements, with edges connecting vertices whose corresponding 
elements have common nodes in underlying mesh. By coloring this interference 
graph so that no two adjacent vertices have the same color, we obtain an algorithm 
that dispenses with the critical section, and instead loops sequentially over the color 
classes as follows: 

for each color class seqdo 
for all vertices (elements) in this color class pardo 

call routines to generate element matrix and right-hand sides 
assemble into stiffness matrix and right-hand side 

endpardo 
endseqdo 

This algorithm will be efficient if the number of sequential steps is kept small, 
equivalently, by coloring the interference graph with the fewest possible colors. For 
general graphs, the minimum coloring problem is NP-complete, but fast heuristics 
are known that will generate a reasonably good minimum coloring. These 
approximate algorithms are usually sufficient, since the increased complexity of 
finding a more optimal minimum coloring must be balanced against the incremen- 
tal speedup that is obtained in the assembly algorithm. We have not implemented 
this approach in our software at the present time, but we consider it to be 
promising especially in nonlinear and time-dependent problems where the overhead 
of generating the coloring can be amortized over repeated assemblies on the same 
mesh. 

581f94’2-8 
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5. IMPLEMENTATION DETAILS FOR ITERATIVE METHODS 

As mentioned earlier, the only part of the iterative method that is not 
straightforward to parallelize is the preconditioning, and this section is therefore 
devoted to this aspect. In particular, there are two rather special issues that arise 
in selecting an appropriate preconditioner for the stiffness matrices generated by a 
finite element discretization. First, the data structures describing the mesh are ele- 
ment-oriented rather than node-oriented, and especially for irregular domains, these 
nodes may be numbered in a fairly arbitrary way. Second, the essential boundary 
conditions are enforced directly in the global matrix after assembly, by modifying 
the appropriate rows so as to trivially yield the correct boundary values upon solu- 
tion. These two considerations make it difficult to identify a sparsity pattern in the 
global stiffness matrix, even though this structure would be evident in the invariably 
carefully-chosen ordering of the equivalent finite-difference formulation. Therefore, 
without further analysis, it is not directly possible to use some of the block-based 
preconditioners that have proved so attractive in the finite difference setting, espe- 
cially for structured problems on regular meshes. Our feeling is that the selection 
of the preconditioner should not detract from the flexibility of the finite element 
formulation, and should be carried out without any a priori assumptions on the 
sparsity structure of the matrix, especially if this can be achieved without sacrificing 
efficiency in any way. 

One class of well-known, general-purpose preconditioners can be derived from an 
incomplete LU factorization of the iteration matrix (assuming this factorization 
exists, see Meijerink and Van der Vorst [ 171; Kershaw [ 151). The advantage of 
these preconditioners is that they can be economically computed by limiting the 
amount of “fill-in” to a fixed sparsity pattern, which is often simply that of the 
original matrix itself. Furthermore, their use in the inner loop of the iterative 
method requires just a sparse triangular forward and backward solve, and this has 
the same complexity as the sparse matrix-vector multiplication, although it is not 
so readily parallelizable at first sight. 

However, Ashcroft and Grimes [2] have shown that for certain very regular 
node orderings generated from finite-difference discretizations, that a careful data 
dependency analysis can be carried out to obtain a stage-wise partitioning of the 
relevant computations in the preconditioner. In each such stage, there is substantial 
medium-grain concurrency on the average, while successive stages have to be 
executed sequentially. Their study was directed towards vectorization, but the basic 
issues on a parallel computer are the same. 

We show how this “wavefront” approach to parallel preconditioning can be 
extended to general sparse matrices through an automatic data-dependency analysis 
of the underlying computation graph. This analysis is carried out for the incomplete 
factorization as well as for the sparse triangular solves in a separate preprocessing 
step, and the results are saved so that the actual numerics can subsequently be 
repeatedly performed with very little overhead. The schedule for the sparse 
triangular solves, for example, is reused in each step of the iterative algorithm when 
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the preconditioner is applied. The preprocessing for the incomplete factorization is 
useful in time-dependent or nonlinear problems, where this computation must be 
carried out repeatedly for a matrix with the same sparsity pattern but with different 
data in it, so that the same schedule can be reused. 

The present effort is also motivated by the work of Baxter et al. [3], who present 
experimental speedup results for the parallelization of the sparse triangular solves on 
an Encore Multimax. After the results in this paper had been obtained, we also became 
aware of other related work. Anderson and Saad [ 1 ] have described level-scheduling 
algorithms similar to that used here for the sparse triangular solves, and have obtained 
experimental results on an Alliant FX/8 for various test matrices in the Boeing-Harwell 
test collection (see also Saad [21]). Hammond and Schreiber [ 141 have also con- 
sidered similar experiments on an Encore Multimax, and in particular, have discussed 
two algorithms, which they term static and dynamic scheduling, respectively, showing 
that the former has less runtime synchronization overhead while the latter provides 
better processor utilization. The approach for the triangular solves that we have 
outlined in the previous paragraph, is intermediate to these two approaches, and it 
tries to simultaneously provide the performance benefits of both these alternatives. 

Our present work also complements and extends the earlier work in some other 
directions. First, we show the relevance of automatically performing the paralleliza- 
tion analysis so that it is not necessary to sacrifice the flexibility in mesh generation 
and assembly that is intrinsic to the finite element method. Second, we show that 
the preprocessing algorithms can be also parallelized, although in practice this may 
not be so critical since the sequential algorithms are both quite efficient and have 
their cost amortized. Nevertheless, it does lead to some interesting parallel 
programming issues that are discussed below. Third, we also consider the 
parallelization of the incomplete factorization algorithm, an aspect that also has not 
been explicitly treated in the previous work; again perhaps the cost of this phase is 
also amortized. However, our measurements do show the importance of achieving 
good speedups here, for the overall efficiency of the application. The primary 
novelty of this aspect of our implementation is the simple and inexpensive scheme 
that is used to avoid race conditions on the shared data, in order to make it 
suitable for parallel environments without cache-coherence synchronization. 

The algorithms given below are described in terms of a sparse matrix T of order 
n, with m non-zero entries. For the stiffness matrices generated from finite element 
discretizations, we usually have the case that n <m < n2. We assume that T is stored 
in the standard row pointer-column index format, but note that in this format, the 
entries of a given row of T can be accessed in constant time, while access to the 
entries of a given column will require O(m) operations. Since efficient access to the 
column entries of T is essential to our algorithms, we maintain, in addition, a 
separate representation of the sparsity pattern of T in a column pointer-row index 
format. This representation requires an additional m + n integers beyond the m + n 

integers and m reals that are used for storing the original matrix, and is very 
efficiently computed from the original representation using a linear O(m) transposi- 
tion sort algorithm (Gustavson [9]). 
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The basic primitive tasks in the parallel implementation are the following 
routines in which certain operations on the rows of T are performed, and which we 
assume to be efficiently coded to exploit sparsity: 

1. rowscl(j), performs the scaling operation T,,, t T,,,/T,, i forj < i < n, j being 
given. 

2. rowupd( j, k), performs the update operation Tk,; t Tk,, - Tk, j x T,,, for all 
j < id n, j and k are given. We term j and k as the pivot and the target row 
indices, respectively. 

3. dot(i, js, je, 6) computes the dot-product of row i of T and a vector h; i.e., 
it returns Ci T,, ;h, for js 6 j <,je, and if js > ,je it returns 0. 

These primitive routines are assumed to be indivisible, since in the usual case, we 
expect the granularity of work in them to be insufficient for amortizing paralleliza- 
tion overheads. This assumption may not true either if the target multiprocessor 
can exploit very line-grain nested parallelism, or if the number of entries in a sparse 
row is relatively large, but in this case, these primitive routines can also be trivially 
parallelized without affecting the present discussion in any way. 

The sequential row-oriented algorithms for the incomplete factorization, and the 
forward and backward sparse triangular solves using these routines are given 
below: 

incomplete factorization: 
forj=l,n-1 do 

call rowscl( j ) 
fork=j+l,n do 
call rowupd( j, k) 
enddo 

enddo 

forward triangular solve: 
for i=l,n do 

t=dot(i, 1, i- 1, h) 
bit (bi- t)/Ti,i 

enddo 

backward triangular solve: 
for i=n-1, 1 step -1 do 

b, t b, - dot( i, i + 1, n, b) 
enddo 

The row-update operation in the inner loop of the incomplete factorization algo- 
rithm is performed only if Tk,i is non-zero, and as such the implementation shown 
above is inefficient and would not be used in practice; it has complexity ~(Fz”) due 
to program looping alone, irrespective of how many inner-loop updates are actually 
performed. In fact, algorithms whose complexity is 0(m) can be obtained; a sim- 
plified uniprocessor version of our parallel implementation is one such algorithm. 
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The parallelization of the forward solve algorithm follows directly from the 
observation that for a sparse triangular matrix it is possible to concurrently 
schedule some of the outer loop iterations, taking care to maintain the storage- 
dependencies implied by the sequential algorithm. Consider the directed graph 
G, = (Vi, E,), where the nodes V, correspond to rows of T, and there is an edge 
from node i to node j in G, whenever T,,, # 0, i < j d n. We denote the cardinalities, 
IE, ( = m, < m and / V, 1 = n. The directed graph G, merely denotes the sparsity 
structure of the lower-triangle of T, and is therefore directly represented by the 
sparse matrix data structure used for it. 

The algorithm for determining a level partitioning of the outer loop iterations for 
concurrent scheduling requires the following shared integer arrays and counters as 
workspace (Note. All arrays are dimensioned for the worst-case storage require- 
ment): 

1. ZnEdge(i), length n + I, for the predecessor counts of each vertex in G,. 

2. Level(i), length n + 1, which eventually holds a list of vertices ordered in 
the sequence in which they will be executed. 

3. LeuPt(,j), length n + 1, holds pointers into the array Level(i), so that all 
vertices from Level( LevPt( j)) to Level(LeuPt(j + 1) - 1) can be concurrently 
scheduled in thejth sequential step. 

4. nverts, counter, for the number of vertices listed in the array Level. 

5. nlev, counter, for the number of levels listed in the array LevPr. 

The algorithm simply carries out a topological sort of the vertices of the directed 
graph G1. It proceeds by recursively visiting the successors of all the vertices at a 
given level and decreasing their predecessor counts. When the predecessor count of 
a successor vertex becomes zero, it is added to the list in Level: 

1. For each vertex i E I’, , determine the predecessor vertex count and store 
the value in ZnEdge( i ) 

2. Locate the source vertex (we assume only one such vertex exists) and place 
it in Let&( 1). Also set LevPt( 1) = 1 and initialize nlrv and nverts to 0 and 1, respec- 
tively 

3. Until all the nodes have been placed in the list do the following 

(a) Set nlev + nlev + 1, LevPt(nlev + 1) +- nverts + 1. 

(b) If nverts = n, then we are done. Exit. 

(c) Visit all the successor vertices of the vertices listed in Level(LevPt(nlev)) 
to Level(LevPr(nlev + 1) - 1) and decrement their predecessor counts in 
the array InEdge by 1. If the predecessor count becomes 0, then add the 
vertex to the list in Level and set nverts t nverts + 1. 

(d) Go to Step (a). 

4. End. 
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A fully parallel implementation of this algorithm is possible by noting that Step (3~) 
above can be executed as a parallel DO-loop if a non-blocking memory instruction 
such as the Fetch-and-Add is used to modify the locations in InEdge and the coun- 
ter noerts, respectively. On ACE, the Fetch-and-Add instruction is not supported in 
hardware, but is available through software emulation and the run-time library 
defaults to a critical-section implementation. The overhead of this critical section, 
is exactly why we compute the schedule as a preprocessing step, rather than perfor- 
ming the scheduling directly during the numerical computation of the triangular 
solve. 

The actual numerical computation of the forward triangular solve with this 
schedule is carried out as follows 

parallel forward solve: 
for ilev = 1, nlev step 1 seqdo 

for il= LevPt(ileu), LevPt(ilev + 1) - 1 pardo 
i + Level( il ) 

bit (h,-dot(i, 1, i- 1, b))/Ti,i 
endpardo 

endseqdo 

The algorithm for the back triangular solve is very similar, except that a directed 
graph G, = (V,, E2) which is generated by the non-zero entries in the upper-triangle 
of T is used. The procedure closely follows the description for the parallelization of 
the forward solve given above. 

We now turn to the parallelization of the incomplete factorization. One 
straightforward approach starting from the sequential algorithm is to note that the 
individual row-updates in the inner loop are independent, and can therefore be 
performed in parallel. For sparse matrices, however, additional parallelism can be 
obtained by scheduling some of the outer loop iterations concurrently. The data 
dependency in the sequential algorithm that must be respected is that a given row 
j becomes an eligible pivot row and can begin updating other rows as soon as it 
is updated by all rows k with T,,, # 0, k < j. It is easy to see that the earliest oppor- 
tunity at which a given row j is an eligible pivot row is determined exactly by the 
level-partitioning computed for the graph in the parallel forward solve algorithm, 
and we therefore assume all the required information to be available in the arrays 
Level and LevPt, and in the shared counter nlev. The only additional difficulty is 
that two different pivot rows, with indices say j, and j,, may simultaneously try to 
update the same target row, leading to multiple-writers on the same segment of 
shared data. 

The first approach to resolve this difficulty is to synchronize memory accesses to 
ensure mutually-exclusive, atomic writes on the relevant shared memory locations. 
This approach will clearly only be effective if a fast (preferably hardware-imple- 
mented) synchronization primitive is available. A variant of this approach is to use 
a critical section for an entire row update operation, which leads to a somewhat 
larger granularity of work per synchronization, but this, however, can be offset by 
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the fact that the synchronization-waiting due to process contention at such a criti- 
cal section is also correspondingly increased. 

The second approach that may be used requires no additional synchronization 
for the memory updates. It works by ensuring that if at all there is a possibility of 
a similtaneous update on the same target row by two different source rows, then 
these updates are performed on the same processor. This enforces the sequentiality 
of these updates and takes care of the multiple-writers problem. The most conser- 
vative algorithm for implementing this approach is one which we term fuzy-evalua- 

Con, where updates to a given target row are delayed until all the source rows that 
will modify it have become eligible pivot rows; all updates to this target row are 
then scheduled together for execution on a single processor. The disadvantage of 
this approach can easily be seen with a few test execution graphs; by delaying 
updates in this way we obtain a longer critical path so that the execution time is 
increased irrespective of the number of processors that are used. At the same time, 
a critical path analysis alone is inconclusive, given the reduction in the synchroniza- 
tion cost, the better local memory utilization, and finally, the smaller gather-scatter 
overhead that is realized when multiple updates on a target row are performed 
sequentially on a single processor. 

The appropriate algorithm in this situation of competing efficiency trade-offs 
therefore depends on several issues, including the sparsity structure of matrix, the 
relative latencies to local and global memory, and the cost of synchronization. The 
approach that we have taken here is a novel hybrid of the two possible schemes 
outlined above. In it we use the aggressive scheduling of target row updates to 
obtain the shorter critical paths characteristic of the first method. We also perform 
a preprocessing analysis in which the possible simultaneous update of the same 
target row are identified and scheduled for execution on the same processor, in 
order to obtain the low synchronization costs and better local memory utilization 
of the second method. This algorithm which is described in further detail below 
requires a list of edge-pairs (Source, Target) which identify the source and target 
row indices for each row-update operation, along with an associated list Group, 
which identifies edge-pairs with the same target row index for grouped execution on 
the same processor. The following integer arrays and counters are required as 
shared workspace: 

1. Source(i), length m, for the list of source row indices 

2. Target(i), length m, for the list of corresponding target row indices 

3. Group(i), length m, contains flags for each pair in the Source and Target 
lists; if 2 1, it indicates the number of succeeding edge-pairs that have the same 
target row index; if 0 it indicates that the associated edge-pair has the same target 
row index as a preceding edge-pair. 

4. LisPt(i), length n + 1, pointers into the Source and Target lists identifying 
edge-pairs that can be scheduled for concurrent execution of the corresponding row 
updates. 
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5. nedge, contains the number of edges that have been placed on the Source 
and Target lists, respectively. 

The algorithm then proceeds as follows: 

1. Set nedge = 0, ilev = 0, and LkPt( 1) = I. Then do the following: 

(a) Set ilev t ilev + 1. If ifeu = nfev, then we are done. Exit. 

(b) Visit each vertex j in the list Leuel(LevPt(ilev)) and 
Level(LevPt(ilev + 1) - 1). For each edge emanating from vertex ,j, 
identify the target vertex k. Set nedge c nedge + 1, and Source(nedge) 

= j, Target(nedge) = k. 

(c) Set LisPt(ileo + 1) to the number of edges added in Step (b) above. 

(d) Go to Step (a). 

2. For each ifev from 1 to nlev - 1 do the following: 

(4 

(b) 

Sort the entries in Target between the locations LisPt(ilev) and 
LisPt(ilev + 1) - 1). Passively move the corresponding entries in 
Source. This step is designed to move all the edges with the same target 
vertex within the same level into contiguous locations for easy iden- 
tification. 

Scan the sorted entries of Target between the locations LisPt(ilev) and 
LisPt(iZev + 1) - 1 and count multiple entries. If the count is 1, then set 
the corresponding entry in Group with the value 1. Otherwise, if the 
count is nn > 1, then set the first corresponding entry in Group equal to 
nn and the next nn - 1 entries to 0. 

In the uniprocessor implementation, step (2) is unnecessary since then the issue of 
write conflicts on shared data does not arise. Again, note that the use of the Fetch- 
and-Add primitive (or a critical section) would allow Step l(b) above to be 
implemented using a parallel DO-loop. Step (2) on the other hand, is seen to be 
fully parallel over each level. 

The actual numerical evaluation of the incomplete factors can now be carried out 
using the following procedure: 

parallel incomplete factorization: 
for ilev = 1, nlev - 1 seqdo 

for i = LevPt(ilev), LevPt(ilev + 1) - 1 pardo 
j + LevPt(i) 
call rowscl(,j) 

endpardo 
barrier 
for i = LisPt(ilev), LisPt(ileu + 1) - 1 pardo 

if (Group(j) # 0) then 
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for ig = i, i + Group(j) - 1 seqdo 

j +- Source( ig) 
k c Target( ig) 

call rowupd(j, k) 
endseqdo 

endif 
endpardo 

endseqdo 

In this algorithm, whenever multiple updates are performed on the same target 
row in the innermost loop, i.e., when the value of Group(j) is greater than one, the 
target row may be copied into local memory and held in expanded form between 
updates to reduce the latency and the number of gather-scatter operations that are 
required in this update. 

The black-box approach to parallel preconditioning described here can be 
generalized further, particularly towards internally restructuring the stiffness matrix 
so that a preconditioner with either more parallelism or better convergence proper- 
ties can be obtained. These two considerations can often conflict, as is well known 
for the matrix generated from the finite-difference discretization of the two-dimen- 
sional Laplacian operator with a 5-point stencil on a rectangular domain. For the 
SSOR and point-incomplete-factorization preconditioners, the lexicographic nodal 
ordering provides much less parallelism than the red-black nodal ordering in the 
application of the preconditioner. However, the red-black preconditioner has a 
much slower rate of convergence, and this trade-off has to be taken into account 
in assessing its overall effectiveness. Schrieber and Tang [23] have suggested the 
use of mesh coloring algorithms to automatically generate suitable parallel incom- 
plete-factorization preconditioners for an arbitrary finite element mesh, but they do 
not implement a program. In any event, the effectiveness of the parallel precondi- 
tioners obtained by restructuring in this way is an interesting open issue. 

6. DISCUSSION OF EXPERIMENTAL RESULTS 

In this section we present experimental timing measurements on ACE, for our 
programs with some model problems specialized from the general formulation of 
Section 2. These model problems use regular domains and discretizations only for 
simplicity of programming and clarity of exposition; the methods are clearly 
applicable to more general situations. 

A. Model Problem ,for Convection-Diffusion Equation 

The following problem was solved on the domain {(x, JJ) :0 < K, J’ < 1 ) 
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TABLE I 

Timings (in Seconds) for Various Parts of the Program 

in the Test Problems of Section 6A 

Procs. 

Bilinear elements Biquadratic elements 

Assem SetUp CWl.Sq Assem Setup CfWlSq 

1 50.0 9.6 110.7 103.2 20.6 160.9 

2 25.1 7.7 60.7 52.1 15.2 89.5 

3 16.9 6.5 43.1 35.1 12.0 64.0 

4 12.7 6.1 34.6 26.4 10.7 51.9 

5 10.4 6.0 29.7 21.5 10.2 43.9 

6 9.0 6.2 26.8 18.7 10.0 39.8 

7 7.8 6.3 24.0 15.7 10.0 35.7 

where the functionf(x, y) and Dirichlet boundary conditions were chosen to obtain 
a known exact solution for c, so that the correctness of the computation could be 
verified; these details are not essential to the rest of discussion here. 

Two test problems using meshes with 40 x 40 bilinear elements and 20 x 20 
biquadratic elements, respectively, were generated, and in each case this leads to 
stiffness matrices of order 1681. In both these test problems, starting from a zero 
initial guess, 16 iterations of the preconditioned CGS method were sufficient to 
reduce the relative 2-norm of the residual below 10-6. The timings obtained for 
some of the important phases of the computation are shown in Table I. These 
include timings for the assembly of the stiffness matrix (assem), the setting up of the 
preconditioner (setup), and the iterative part of the CGS algorithm (consq). The 
setup time includes all the preprocessing, as well as the numerical computation of 
the incomplete factorization. The timings for consq will depend on the number of 
iterations, and hence on the desired solution accuracy. However, since these itera- 
tions are all executed sequentially, the speedups computed from these timings will 
be independent of the number of iterations. 

The speedups for the assembly and the iterative part computed from Table I are 
shown plotted in Fig. 1. For the assembly, the departure of the curves from linearity 
reflects the increased contention at the critical section when more active processes 
are used. The alternative assembly algorithm described in Section 4 might be 
preferred in this case, but we have no experimental results for it as yet. The itera- 
tions of the CGS algorithm also parallelize well, reflecting the generally highly 
parallel nature of the computations in it. As the detailed timings below show, the 
drop-off in the efficiency with increasing numbers of processors is due to the rather 
small granularity of parallel work for this problem size and, to a certain extent, due 
to the limited speedup obtained in the application of the preconditioner. The setup 
part has the poorest speedup characteristics, which levels off with more than 
three-four processors; this is due to the relatively large synchronization overhead in 
this portion of the computation, and it is precisely here that hardware support for 
a Fetch-and-Add instruction might have led to greater efficiency. 
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FIG. 1. Speedups for the matrix assembly and the iterative part of the CGS solver for the convection- 

diffusion problem. 

A low-level breakdown of the execution times for some of the individual routines 
in CGS for the biquadratic elements test problem is given in Table II, and speedups 
are shown plotted in Fig. 2. These timings include the symbolic preprocessing for 
the sparse triangular solves (pssoll) and the actual numerical computation (pssol2), 
the symbolic preprocessing for the incomplete factorization (pilul) and the actual 
numerical computation (pilu2), and the matrix-vector multiplication (mumuf). The 
measurements had to be carried out rather carefully to obtain the two significant 
decimal places reported, because of the rather coarse granularity (60 Hz) of the 
timer. 

TABLE II 

Timings (in Seconds) for Some Routines in the CGS Algorithm 

for the Biquadratic Elements Test Problem in Section 6A 

Procs p.wol I pssol2 pilu I pilu 2 nwmil 

2.49 2.85 3.55 12.7 1.84 

1.50 1.64 2.16 6.90 0.96 
1.21 1.22 1.54 4.74 0.66 

1.05 1.02 1.25 3.69 0.50 
0.96 0.90 1.08 3.07 0.42 

0.90 0.84 0.98 2.68 0.37 
0.88 0.8 1 0.90 2.42 0.3 1 
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FIG. 2. Speedups for the preconditioning routines used in the CGS solver for the convection- 

diffusion problem for a 20 x 20 biquadratic elements mesh, 

From Fig. 2, we see that the speedups obtained for the preprocessing routines 
pssoll and pilul in the biquadratic elements case are 2.8 and 3.6, respectively, on 
six processors. As expected, the performance in the numerical parts, i.e., in pssol2 
and pilu2 is somewhat better; with six processors, speedups of 3.4 and 4.7, respec- 
tively, are obtained. The parallel efficiency obtained for pssol2 is especially critical, 
since this routine is invoked twice in each iteration of CGS to perform the pre- 
conditioning, and the results that we obtain for it are comparable to that reported 
in Baxter et al. [3] for problems of equivalent size. The speedup for mumul is 5.0 
on six processors, and we attribute the less than perfect speedup for this fully 
parallel routine to the small granularity of parallelization. 

B. Model Problem for Stokes Equation 

In this case, (7~(9) was solved on the domain {(x, y):O<x, y< 1 }, with zero 
velocity boundary conditions throughout, except for the top surface y = 1, where 
the x-component of the boundary velocity was set to unity. This is the classic 
“driven-cavity” problem and the discretization (15) is applicable. Two meshes were 
chosen for detailed experimental study. The first mesh consists of 8 x 8 elements and 
for it the order of the linear systems solved in the inner and outer iterations was 
450 and 64, respectively. The second mesh consists of 16 x 16 elements, and 
required linear systems of 1666 and 256 to be solved in the inner and outer itera- 
tions, respectively. An absolute convergence criterion of lo-’ for the outer iteration 
and lo-* for the inner iteration was used, and these values are appropriate in view 
of the discretization error and the scaling of the problem variables. As an 
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TABLE III 

The Residual Reduction and the Number of Inner Iterations 

for Each Outer Iteration of the IOCG Algorithm in Section 6B 

Outer 8 x 8 elements 16 x 16 elements 

iter. no Residual norm No. of inner item. Residual norm No. of inner item. 

I 0.67e-1 12 0.45e-1 19 

2 0.65e-2 12 0.50e-2 19 

3 O.l3e-2 12 O.lOe-2 19 

4 0.42e-3 10 0.33e-3 15 

5 O.l2e-3 9 0.1 Oe-3 12 

6 0.48e-4 8 0.28e-4 II 

7 O.lOe-4 7 O.l3e-4 IO 

8 0.16e-5 7 0.43e-5 9 

implementation issue, we mention that the sparse matrix A is actually two separate 
copies of the equivalent discrete Laplacian for each velocity component, except for 
the different boundary conditions on the top surface. However, the matrix was not 
stored in this fashion, but rather the ordering obtained by numbering the 
unknowns at each node consecutively was used, which is consistent with the usual 
finite element practice of trying to obtain a stiffness matrix of low bandwidth for 
direct methods. Note that if the two velocity components are coupled, then the 
ordering will not affect the storage requirement in the sparse format, but the incom- 
plete factorization preconditioner that is obtained will be different in each case. 

The convergence history of the outer iteration of the IOCG algorithm is shown 
in Tablr III. It is seen that the number of inner iterations required to reduce the 
inner residual to a fixed tolerance decreases by almost a factor of two as better 
initial guesses are available during the progress of the outer iteration to con- 
vergence. In Table IV, we show the timings and parallel efficiencies for the entire 
IOCG algorithm on these two test problems. The corresponding speedups are 

TABLE IV 

Timings (in Seconds) and Parallel Efficiencies 

for the Entire IOCG Algorithm of Section 6B 

Procs. 
8 x 8 elements 16 x 16 elements 

Time EK Time EIT. 

1 301.2 1.00 1796.5 I .oo 

2 183.2 0.82 1007.0 0.89 

3 136.7 0.73 726.1 0.82 

4 120.5 0.62 601.1 0.74 

5 105.6 0.57 541.1 0.66 

6 99.9 0.50 437.0 0.69 

7 97.3 0.44 
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FIG. 3. Speedups for the entire IOCG algorithm for the Stokes equations, Results for two different 
mesh sizes are shown. 

shown plotted in Fig. 3. The results show, as expected, that the overheads are 
reduced for the larger problem size, resulting in higher parallel efficiencies for them. 
In this algorithm it is especially critical that the inner conjugate gradient procedure 
be implemented efficiently, since it accounts for the dominant cost in the computa- 
tion, so that a substantial payoff is obtained from a careful implementation and an 
effective preconditioner for it. 

One straightforward optimization in the IOCG algorithm results from the fact 
that the matrix to be inverted in the inner loop is unchanged between outer itera- 
tions, so that its incomplete factorization may be computed once initially, and then 
reused in subsequent iterations. Our informal measurements in the specific case of 

TABLE V 

Timings (in Seconds) for the Incomplete Factorization 
Preconditioner Routines in the Inner Loop of IOCG 
for the 16 x 16 Elements Test Problem of Section 6B 

Procs. pSSOl1 pssol2 pilu 1 pilu2 

1 3.74 4.74 6.74 37.97 
2 2.40 2.17 4.21 20.15 
3 1.88 2.08 3.03 13.72 
4 1.69 1.81 2.44 10.57 
5 1.52 1.59 2.08 8.69 
6 1.41 1.38 1.86 7.36 
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FIG. 4. Speedup performance of the preconditioning routines in the inner conjugate gradient loop of 

the IOCG algorithm for the Stokes equations. Results are for the 16 x 16 mesh. 

the 16 x 16 element mesh problem shows the overhead of computing the incomplete 
factorization to amount to roughly about 24% of the time of the inner iteration in 
the parallel algorithm, so that the potential savings can be quite substantial. 

In Table V, we show the timings obtained for the various preconditioning 
routines. These results, and the speedups shown in Fig. 4, are similar to those of the 
previous subsection. In particular, a continuous decrease in the execution time is 
seen as the number of processors is increased in the range studied. For exampie, 
with six processors we obtain speedups of 2.65 and 3.62 respectively for the two 
symbolic routines pssoll and pilul, and speedups of 3.43 and 5.16 respectively for 
the numerical routines pssol2 and pilz.42. 

7. SUMMARY AND FUTURE WORK 

We have described implementation techniques and experimental results for finite 
element applications on a small shared-memory parallel computer. The primary 
focus was on the use of polynomial iterative methods with incomplete factorization 
preconditioners for solving linear systems of algebraic equations. A strategy for 
parallelizing these algorithms while maintaining the intrinsic flexibility of the finite 
element method was discussed, and shown experimentally to lead to reasonable 
parallel efficiencies on the ACE multiprocessor system. Overall, the speedup trends 
for the rather small problems that we have studied are encouraging and seem to 
demonstrate the viability of the approach developed here for realistic, large-scale 
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applications on moderately parallel, shared memory computers. Since the architec- 
tural parameters of various parallel computers will differ widely, it is difftcult to 
obtain a truly general implementation that is equally efficient across the range of 
target architectures. Nevertheless, we believe that our approach will be efficient 
without further modification on many of these architectures, and we are currently 
exploring this aspect for more realistic “production-type” applications on commer- 
cial supercomputers. In addition, the model problems of this paper may be 
generalized by using a building-block approach to develop parallel implementation 
strategies for more complicated applications. For example, the Stokes equation 
solver can be used in the inner loop of a Picard-type nonlinear iteration for solving 
the full Navier-Stokes equations. Similarly, the methods for the convection-diffu- 
sion equation may be extended to multicomponent transport problems or even to 
problems that involve both flow and transport (such as te Boussinesq equations) by 
suitably combining the various algorithms described in this paper. 

APPENDIX 1 

function ddot(n,dx,dy) /* inner-product of two shared arrays */ 

@SHARED /ddotxx/ dglb 

real dglb /* shared variable declaration */ 

@ENDSHARED 

real dx(l),dy(l),dloc 

integer i,n,ichnk 

@SERBEG 

dglb = O.OeO /* one process initializes global variable */ 

QSEREND 

dloc = O.OeO /* all processes initialize private variable */ 

ichnk = ((n - l)/ QNPROCS) + 1 /* compute chunksize */ 

@DO 30 i = 1, n, 1 CHUNK = ichnk 

dIoc = dloc + dx(i) * dy(i) /* dot-products in parallel */ 

30 continue 

QENDDO30 
@LOCK 
dglb = dglb + dloc /* sum private values in critical section */ 

QENDLOCK 
@BARRIER /* ensure all processes have updated global counter */ 

ddot = dglb /* make private copy of dot-product and return it */ 

return 

end 
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